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ABSTRACT
Standard routing protocols for IPv6 over Low power Wire-
less Personal Area Networks (6LoWPAN) are mainly de-
signed for data collection applications and work by estab-
lishing a tree-based network topology, which enables pack-
ets to be sent upwards, from the leaves to the root, adapting
to dynamics of low-power communication links. The rout-
ing tables in such unidirectional networks are very simple
and small since each node just needs to maintain the ad-
dress of its parent in the tree, providing the best-quality
route at every moment. In this work, we propose Matrix, a
platform-independent routing protocol that utilizes the ex-
isting tree structure of the network to enable reliable and
efficient any-to-any data traffic. Matrix uses hierarchical
IPv6 address assignment in order to optimize routing ta-
ble size, while preserving bidirectional routing. Moreover,
it uses a local broadcast mechanism to forward messages to
the right subtree when persistent node or link failures oc-
cur. We implemented Matrix on TinyOS and evaluated its
performance both analytically and through simulations on
TOSSIM. Our results show that the proposed protocol is su-
perior to available protocols for 6LoWPAN, when it comes
to any-to-any data communication, in terms of reliability,
message efficiency, and memory footprint.

CCS Concepts
•Networks→Network protocol design; Network layer
protocols;
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1. INTRODUCTION
IPv6 over Low-power Wireless Personal Area Networks

(6LoWPAN) is a working group inspired by the idea that
even the smallest low-power devices should be able to run the
Internet Protocol to become part of the Internet of Things.
Standard routing protocols for 6LowPAN, such as CTP (Col-
lection Tree Protocol [6]) and RPL (IPv6 Routing Proto-
col for Low-Power and Lossy Networks [19]), have two dis-
tinctive characteristics: communication devices use unstruc-
tured IPv6 addresses that do not reflect the topology of the
network (typically derived from their MAC addresses), and
routing lacks support for any-to-any communication since
it is based on distributed collection tree structures focused
on bottom-up data flows (from the leaves to the root). The
problem with such one-directional routing is that it makes
it inefficient to build important network functions, such as
configuration routines and reliable mechanisms to ensure the
delivery of end-to-end data.

Even though CTP does not support any-to-any traffic, the
specification of RPL defines two modes of operation for top-
down data flows: the non-storing mode, which uses source
routing, and the storing mode, in which each node maintains
a routing table for all possible destinations. This requires
O(n) space (where n is the total number of nodes), which is
unfeasible for memory-constrained devices.

Some works have addressed this problem from different
perspectives. In [15], the authors proposed a hierarchical
IPv6 address allocation scheme, referred to as MHCL, to en-
able any-to-any routing by incorporating network topology
information into the IPv6 address, assigned to each node in a
multihop fashion. MHCL was implemented as a subroutine
of RPL and showed to enable any-to-any routing using com-
pact routing tables. MHCL stores the IPv6 address range
of the entire subtree rooted at a child node in a single rout-
ing table entry, which results in O(k) memory space, where
k is the number of one-hop descendants of a node in the
collection tree. The downside of MHCL is that it was not
designed to deal with network faults and dynamic network
topologies since a message can be dropped whenever a node
or link failure occurs in the address hierarchy.

In this work, we build upon the idea of using hierarchi-
cal IPv6 address allocation and propose Matrix, a routing
scheme for dynamic network topologies and fault-tolerant
any-to-any data flows in 6LoWPAN. Matrix assumes there
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is an underlying collection tree topology (provided by CTP
or RPL, for instance), in which nodes have static locations,
i.e., are not mobile, and links are dynamics, i.e., nodes might
choose different parents according to link quality dynam-
ics. Matrix uses only one-hop information in the routing
tables and implements a local broadcast mechanism to for-
ward messages to the right subtree when node or link failures
occur.

After the network has been initialized and all nodes have
received an IPv6 address range, three simultaneous distributed
trees are maintained by all nodes: the collection tree (Ctree),
the IPv6 address tree (IPtree), and the reverse collection
tree (RCtree). Initially, any-to-any packet forwarding is per-
formed using Ctree for bottom-up and IPtree for top-down
data flows. Whenever a node or link fails or Ctree changes,
the new link is added in the reverse direction into RCtree
and is maintained as long as this topology change persists.
Top-down data packets are then forwarded from IPtree to
RCtree via a local broadcast. The node that receives a local-
broadcast checks whether it knows the subtree of the desti-
nation IPv6 address: if yes then it forwards the packet to
the right subtree via RCtree and the packet continues its
path in the IPtree until the final destination.

Why is this approach robust to network dynamics? Rout-
ing is performed using the address hierarchy represented by
the IPtree, so whenever a link or node fails, messages ad-
dressed to destinations in the corresponding subtree may be
lost. Matrix uses the (dynamic) reverse collection tree and
the local broadcast mechanism to forward messages to the
right subtree, as long as an alternative route exists. Note
that this local rerouting mechanism does not guarantee that
all messages will be delivered. We argue that the probabil-
ity that the message will be forwarded to the appropriate
subtree is high, as long as there is a valid path, due to the
geometric properties of wireless networks. Our simulations
showed that this intuition is, in fact, correct.

Why does this approach scale? Each node stores only
one-hop neighborhood information, namely: the id of its
parent in Ctree, the IPv6 address ranges of its children in
the IPtree, and the IPv6 address ranges of its (temporary)
children in the RCtree. Therefore, the memory footprint
at each node is O(k), where k is the number of children at
any given moment in time. The impact of such low memory
footprint on the end-to-end routing success is impressive:
whereas RPL delivers less than 20% of packets in some sce-
narios, Matrix delivers 99% of packets successfully, without
end-to-end mechanisms.

We evaluated the proposed protocol both analytically and
by simulation. Even though Matrix is platform-independent,
we implemented it as a subroutine of CTP on TinyOS and
conducted simulations on TOSSIM. The results showed that,
when it comes to any-to-any communication, Matrix presents
significant gains in terms of reliability (higher any-to-any
message delivery) and scalability (presenting a constant, as
opposed to linear, memory complexity at each node) at a
moderate cost of additional control messages, when com-
pared to other state-of-the-art protocols, such as RPL.

To sum up, Matrix achieves the following essential goals
that motivated our work:

• Any-to-any routing: Matrix enables end-to-end con-
nectivity between hosts located within or outside the
6LoWPAN.

• Memory efficiency: Matrix uses compact routing
tables and, therefore, is scalable to very large networks.

• Reliability: Matrix achieves 99% delivery without
end-to-end mechanisms, and delivers ≥ 95% of end-
to-end packets when a route exists under challenging
network conditions.

• Communication efficiency: Matrix uses adaptive
beaconing based on Trickle algorithm [11] to minimize
the number of control messages in dynamic network
topologies (except with node mobility).

• Hardware independence: Matrix does not rely on
specific radio chip features, and only assumes an un-
derlying collection tree structure.

• IoT integration: Matrix allocates global (and struc-
tured) IPv6 addresses to all nodes, which allow nodes
to act as destinations integrated into the Internet, con-
tributing to the realization of the Internet of Things.

The rest of this paper is organized as follows. In Section 2
we describe the Matrix protocol design. In Section 3, we an-
alyze the message complexity of the protocol. In Section 4
we present our analytical and simulation results. In Sec-
tion 5 we discuss some related work. Finally, in Section 6
we present the concluding remarks.

2. DESIGN OVERVIEW
The objective of Matrix is to enable any-to-any routing in

an underlying data collection protocol for 6LoWPAN, such
as CTP and RPL, while preserving memory and message ef-
ficiency, as well as adaptability to networks topology dynam-
ics1. Matrix is a network layer protocol that works together
with a routing protocol. Figure 1 illustrates the protocol’s
architecture, which is divided into: routing engine and for-
warding engine. The routing engine is responsible for the
address space partitioning and distribution, as well as rout-
ing table maintenance. The forwarding engine is responsible
for application packet forwarding.

Matrix is comprised of the following execution phases:
1. Collection tree initialization: the collection tree
(Ctree) is built by the underlying collection protocol; each
node achieves a stable knowledge about who its parent is;
adaptive beaconing based on Trickle algorithm [11] is used
to define stability;
2. Descendants convergecast, IPv6 tree broadcast:
once the collection tree is stable, the address hierarchy tree
(IPtree) is built using MHCL [16]; this phase also uses adap-
tive beaconing to handle network dynamics; by the end of
this phase, each node has received an IPv6 address range
from its parent and each non-leaf node has partitioned its
own address space among its children; the resulting address
hierarchy is stored in the distributed IPtree, which initially
has the same topology as Ctree, but in reverse, top-down,
direction.
3. Standard routing: bottom-up routing is done using the
collection tree, Ctree, and top-down routing is done using
the address hierarchy represented by the IPtree; any-to-any

1Note that Matrix is not designed to address scenarios with
node mobility, but only to work with network topology dy-
namics caused by changes in link quality, as well as node
and link failures.
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Figure 1: Matrix protocol’s architecture.

routing is performed by combining bottom-up forwarding,
until the least common ancestor of sender and receiver, and
then top-down forwarding until the destination.
4. Alternative top-down routing table upkeep: when-
ever a node changes its parent in the initial collection tree,
it starts sending beacons to its new parent in Ctree, request-
ing to upkeep an entry in its routing table with its own IPv6
range; such new links in Ctree, in reverse direction, comprise
the RCtree routing tables for alternative (top-down) rout-
ing;
5. Alternative top-down routing via local broadcast:
whenever a node fails to forward a data packet to the next
hop/subtree in the IPtree, it broadcasts the packet to its
one-hop neighborhood; upon receiving a local broadcast, all
neighbors check if the destination IPv6 belongs to an ad-
dress range in their RCtree table; if positive, the packet is
forwarded to the correct subtree of IPtree, otherwise, the
packet is dropped; we give a geometric argument and show
through simulations that such events are rare.

Next we describe the architecture of Matrix in more detail.

2.1 IPv6 multihop host configuration
Matrix is built upon the idea of IPv6 hierarchical address

allocation, proposed in [16, 15]. Once the collection tree is
stable, the address space available to the border router of
the 6LoWPAN, for instance the 64 least-significant bits of
the IPv6 address (or a compressed 16-bit representation of
the latter), is hierarchically partitioned among nodes in the
collection tree. The (top-down) address distribution is pre-
ceded by a (bottom-up) convergecast phase, in which each
node counts the total number of its descendants, i.e., the size
of the subtree rooted at itself, and propagates it to its (pre-
ferred) parent. Each node saves the number of descendants
of each child.

Once the root has received the (aggregate) number of de-
scendants of its k children, it partitions the available address
space into k ranges of size proportional to the size of the sub-
tree rooted at each child, leaving a portion of the space as
reserve for possible late coming connections (see Figure 2).
Each node repeats the address space partitioning procedure
upon receiving its own address range from the parent and
sends the proportional address ranges to the respective chil-

dren, until all nodes have received an address. If a new node
connects to the tree after the aggregation phase, it receives
an address range from the reserved space of the respective
parent node (the details of the communication routines used
in this phase are described in detail in [15]).

Since the address allocation is performed in a hierarchical
way, each entry in the routing table aggregates the addresses
of all destination nodes in the subtree rooted at the corre-
sponding child node.

 
0 to 255 

208 to 255 
16 to 183 

27 to 151 

184 to 207 

152 to 182 

70% 
10% 20% 

80% 20% 

Figure 2: Example of hierarchical address assign-
ment: (simplified) scenario with 8-bit available ad-
dress space at the root and 6.25% of address reserve
for delayed connections at each node.

After the address configuration phase, the network initial-
ization is done. Each node has built the IPtree routing table
with the address range of each child. All table entries are
disjoint and sorted in increasing order of addresses. In this
way, message forwarding can be performed in linear time
using one comparison operation per table entry.

2.2 Control plane: distributed tree structures
After the network is initialized and all nodes have received

an IPv6 address range, three simultaneous distributed trees
are maintained on all nodes in the 6LoWPAN: Ctree: the
collection tree, maintained by the underlying collection pro-
tocol (CTP/RPL). IPtree: the IPv6 address tree, built
during the network initialization phase and kept static after-
wards, except when new nodes join the network, in which
case they receive an IPv6 range from the reserve space of
the respective parent node in the collection tree. RCtree:
the reverse collection tree, reflecting the dynamics of the
collection tree in the reverse direction.

Initially, IPtree has the same topology as the reverse-
collection tree CtreeR, and RCtree has no links (see Figure
3(a) and 3(b)).

IP tree = CtreeR and RCtree = ∅

Whenever a change occurs in one of the links in Ctree, the
new link is added in the reverse direction into RCtree and
maintained as long as this topology change persists (see Fig-
ures 3(c) and 3(d)).

RCtree = CtreeR \ IP tree

Therefore, RCtree is not really a tree since it contains
only the reversed links present in Ctree but not in IPtree.
Nevertheless, its union with the “working” links in IPtree
is, in fact, a tree, which is used in the alternative top-down
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routing:

RCtree ∪ (IP tree ∩ CtreeR) :alternative routing tree.

(a) (b)

(c) (d)

Figure 3: RCtree example: before and after two
links change in the collection tree.

Each node ni maintains the following information:

• CTparenti: the ID of the current parent in the dy-
namic collection tree;

• IParenti: the ID of the node that assigned ni its IPv6
range initially CTarenti = IParenti);

• IPchildreni: the standard (top-down) routing table,
with address ranges of each one-hop descendent of ni

in the IPtree;

• RChildreni: the alternative (top-down) routing table,
with address ranges of one-hop descendants in the RC-
tree.

Note that, each node stores only one-hop neighborhood
information, so the memory footprint is O(k), where k is
the number of a node’s children at any given moment in
time, which is optimal, considering that any (optimal) top-
down routing mechanism would need at least one routing
entry for every (current) child in the tree topology to reach
all destinations.

The routing engine (see Figure 1) is responsible for creat-
ing and maintaining the IPtree and RCtree routing tables.
IPtree is created during the network initialization phase,
while RCtree is updated dynamically to reflect changes in
the network’s link qualities. Whenever a node ni has its
CTparenti updated, and the current parent is different from
its IParenti (IParenti 6= CTparenti), ni starts sending pe-
riodic beacons to its new parent, with regular intervals (in
our experiments, we set the beacon interval to δ/8, where δ
is the maximum interval of the Trickle timer used in CTP).
Upon receiving a beacon (from a new child in the collection
tree), a node (nj = CTparenti) creates and keeps an entry
in its alternative routing table RChildrenj with the IPv6
address range of the subtree of ni. As soon as ni stops us-
ing nj as the preferred parent, it stops sending beacons to
nj . If no beacon is received from ni after 2×δ ms, its (alter-
native) routing entry is deleted. Therefore, links in RCtree

are temporary and are deleted when not present in neither
the collection nor the IP trees.

2.3 Data plane: any-to-any routing
The forwarding engine (see Figure 1) is responsible for

application packet forwarding. Any-to-any routing is per-
formed by combining bottom-up forwarding, until the least
common ancestor of sender and receiver, and then top-down
forwarding until the destination. Upon receiving an applica-
tion layer packet, each node ni verifies whether the destina-
tion IPv6 address falls within some range j ∈ IPchildreni:
if yes then the packet is forwarded (downwards) to node nj ,
otherwise, the packet is forwarded (upwards) to CTparenti.
Note that, since each node has an IPv6 address, in contrast
to collection protocols, such as CTP and RPL, in Matrix,
every node can act as a destination of messages originated
inside and outside of the 6LoWPAN.

Each forwarded packet requests an acknowledgment from
the next hop and can be retransmitted up to 30 times (sim-
ilarly to what is done in CTP [6]). If thereafter no acknowl-
edgment is received, then the node performs a local broad-
cast, looking for an alternative next hop in the RCtree table
of a (one-hop) neighbor. The alternative routing process is
described in detail below.

2.4 Fault tolerance and network dynamics
So why is Matrix robust to network dynamics? Note that,

since routing is based on the hierarchical address allocation,
if a node with the routing entries necessary to locate the
next subtree becomes unreachable for longer than approxi-
mately one second (failures that last less than 1s are effec-
tively dealt with by retransmission mechanisms available in
standard link layer protocols), messages with destinations in
that subtree are dropped.

When a node or link fails or changes in Ctree, RCtree re-
flects this change, and packets are forwarded from IPtree to
RCtree via a local broadcast. The node that receives a local-
broadcast checks in its RCtree whether it knows the subtree
of the destination IPv6 address: if yes then is forwards the
packet to the right subtree and the packet continues its path
in the IPtree until the final destination.

Consider the following scenario: node X receives a packet
with destination IPv6 address D (see Figure 4(a)). After
consulting its standard routing table IP −childrenX , X for-
wards the packet to C. However, the link X ⇒ C fails, for
some reason, and C does not reply with an acknowledgment.
Then, X makes a constant number (e.g., 30 times in CTP) of
retransmission attempts. Meanwhile, since node C also lost
its connection to X, it decides to change its parent in the
collection tree to node A (see Figure 4(b)). Having changed
its parent, C starts sending beacons to A, which creates
an entry in its alternative routing table RC − childrenA

for the subtree rooted at C, and keeps it as long as it re-
ceives periodic beacons from C (which will be done as long
as CTparentC = A).

Having received no ack from C, X activates the local broad-
cast mode: it sets the message’s type to“LB”and broadcasts
it to all its one-hop neighbors (see Figure 4(c)). Upon re-
ceiving the local broadcast, node A consults its alternative
routing table and finds out that the destination address D
falls within the IPv6 address range C. It then forwards the
packet to C, from where the packets follows along its stan-
dard route in the subtree of C (see Figure 4(d)).
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(a) (b)

(c) (d)

Figure 4: Alternative top-down routing.

Note that this mechanism does not guarantee that the
message will be delivered. If no one-hop neighbor of X had
the address range of C in its alternative routing table, then
the packet would be lost. Nevertheless, we argue that the
probability that the message will be forwarded to the appro-
priate subtree is high.

2.5 Alternative routing: geometric rationale
The success of the local broadcast mechanism lies in the

ability to forward messages top down along the IPtree, in
spite of one or more link or node failures on the way. Matrix
is designed to handle (non-adjacent) link or node failures
and relies on a single local broadcast and temporary reverse
collection links (RCtree).

Consider once again the scenario illustrated in Figure 4.
When a node X is unable to forward a packet to the next
hop, it activates the local broadcast mechanism, and it be-
comes essential that one of X’s one-hop neighbors (in this
case A) has replaced X as a parent of C in the collection tree.
Therefore, given that the new parent of C is A, it becomes
essential that X and A are neighbors. We argue that it is
unlikely that this is not the case.

Our argument is of geometric nature. Since the considered
6LoWPAN is wireless, we show our argument in a unit disk
graph (UDG) model [2]. We use the fact that the number of
independent neighbors of any node in a UDG is bounded by
a small constant, namely 5. The proof of this fact is sketched
in Figure 5: consider a node X and its neighbor A. Any node
located inside the gray region is a neighbor of both X and
A, so any neighbor of X that is independent of (not adjacent
to) A has to be outside the gray area and inside the circle
around X. Let’s call this neighbor B. The next independent
neighbor of X has to be located outside the 60 degree sector

 

X 

60° 60° 
60° 

60° 120° 

A 

B 

C 

D 

E 

Figure 5: UDG model: the number of independent
neighbors of X is at most 5.

that starts at B, and so on. This procedure can be repeated
no more than 5 times, before the 360 degrees around X are
covered.

Given that the maximum number of neighbors that do
not know each other is very small, for any possible node
distribution and density around X, the probability that two
neighbors of X are independent is low. In Figure 4(c), since
both X and A are neighbors of C, the probability that they
are themselves neighbors is high. Similar arguments can be
used to back the effectiveness of the local broadcast mecha-
nism when dealing with different non-adjacent link and node
failures.

Note that this reasoning is only valid in an open space
without obstacles and, even then, does not guarantee that
the message will be delivered. Nevertheless, our experiments
show that this intuition is in fact correct, and Matrix has
a 95%–99% message delivery success in scenarios with node
failures of increasing frequency and duration.

3. COMPLEXITY ANALYSIS
In this section, we assume a synchronous communication

model with point-to-point message passing. In this model,
all nodes start executing the algorithm simultaneously and
time is divided into synchronous rounds, i.e., when a message
is sent from node v to its neighbor u at time-slot t, it must
arrive at u before time-slot t+ 1.

We first analyze the message and time complexity of the
IPv6 address allocation phase of Matrix. Then, we look into
the message complexity of the control plane of Matrix after
the network initialization phase.

Note that Matrix requires that an underlying acyclic topol-
ogy (Ctree) has been constructed by the network before the
address allocation starts, i.e., every node knows who its par-
ent in the Ctree is. Moreover, one of the building blocks of
Matrix is the IPv6 multihop host configuration, performed
by MHCL [15].

Theorem 1. [15] For any network of size n with a span-
ning collection tree Ctree rooted at node root, the message
and time complexity of Matrix protocol in the address al-
location phase is Msg(MatrixIP (Ctree, root)) = O(n) and
T ime(MatrixIP (T, root)) = O(depth(Ctree)), respectively.
This message and time complexity is asymptotically optimal.

Proof. The address allocation phase is comprised of a
tree broadcast and a tree convergecast. In the broadcast
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operation, a message (with address allocation information)
must be sent to every node by the respective parent, which
needs Ω(n) messages. Moreover the message sent by the root
must reach every node at distance depth(Ctree) hops away,
which needs Ω(depth(Ctree)) time-slots. Similarly, in the
convergecast operation, every node must send a message to
its parent after having received a message from its children,
which needs Ω(n) messages. Also, a message sent by every
leaf node must reach the root, at distance ≤ depth(Ctree),
which needs Ω(depth(Ctree)) time-slots.

Next, we examine the communication cost of the routines
involved in the alternative routing, performed in the pres-
ence of persistent node and link failures.

Theorem 2. Consider a network with n nodes and a fail-
ure event that causes LCT links to change in the collection
tree Ctree for at most ∆ ms. Moreover, consider a beacon
interval of δ ms. The control message complexity of Matrix
to perform alternative routing is Msg(MatrixRC) = O(n).

Proof. Consider the LCT link changes in the collection
tree Ctree. Note that LCT = O(n) since Ctree is acyclic
and, therefore, has at most n − 1 links. Every link that
was changed must be inserted in the RCtree table of the
respective (new) parent and kept during the interval ∆ using
regularly sent beacons from the child to the parent. Given
a beacon interval of δ, the total number of control messages
is bounded by ∆/δ × LCT = O(n).

Note that, in reality, the assumptions of synchrony and
point-to-point message delivery do not hold in a 6LoWPAN.
The moment in which each node joins the tree varies from
node to node, such that nodes closer to the root tend to
start executing the address allocation protocol earlier than
nodes farther away from the root. Moreover, collisions, node
and link failures can cause delays and prevent messages from
being delivered. We analyze the performance of Matrix in
an asynchronous model with collisions and transient node
and link failures of variable duration through simulations in
Section 4.

4. EVALUATION
In this section, we evaluate the performance of Matrix

through simulations.

4.1 Simulation setup
Matrix was implemented as a subroutine of CTP in TinyOS

[10] and the experiments were run using the TOSSIM sim-
ulator [9]. We compare Matrix with and without the local
broadcast mechanism, to which we refer as MHCL (note that
the implementation is different from that in [15], where it
was implemented as a subroutine of RPL). RPL was imple-
mented in Contiki [4] and was simulated on Cooja [5]. Table
1 lists the default simulation parameters used for each proto-
col, in a non-faulty scenario. We use the LinkLayerModel
tool from TinyOS to generate the topology and connectiv-
ity model. We simulated a range of faulty scenarios, based
on experimental data collected from TelosB sensor motes,
deployed in an outdoor environment [1]. In each scenario,
after every 60 seconds of simulation, each node shutdowns
its radio with probability σ and keeps the radio off for a
time interval uniformly distributed in [ε − 5, ε + 5] seconds
(see Table 2). The first scenario (Scn1) represents a network

without node failures. The remaining scenarios represent a
combination of values of σ and ε. Note that these are all
node-failure scenarios, which are significantly harsher than
models that simulate link or per-packet failures only.

On top of the network layer, we ran an application, in
which each node sends 10 messages to the root, and the
root relies with an ack. Nodes start sending application
messages 90 seconds after the simulation has started. The
entire simulation takes 20 minutes. Each simulation was
run 10 times. In each plot, the curve or bars represent the
average, and the error bars the confidence interval of 95%.

Table 1: Simulation parameters

Parameter Value

Base Station 1 center
Number of Nodes 100
Radio Range (m) 100
Density (nodes/m2) 10
Number of experiments 10
Path Loss Exponent 4.7
Power decay (dB) 55.4
Shadowing Std Dev (dB) 3.2
Simulation duration 20 min
Application messages (node to root + ack) 10 per node
Max. Routing table size 20 entries

4.2 Results
Firstly, we turn our attention to memory efficiency of each

protocol. To evaluate the usage of routing tables, we com-
pare the number of entries used by each protocol. Each
node was allocated a routing table of equal maximum size:
20 entries. In Figure 6, we show the CDFs (cumulative dis-
tribution functions) of the percentage of routing table usage
among nodes2), and compare Matrix, RPL, and MHCL. In
this plot, Matrix was simulated in the faulty scenario #10
(Table 2). Note that > 35% of nodes are leaves, i.e., do
not have any descendants in the collection tree topology,
and therefore use zero routing table entries. As we can see,
RPL is the only protocol that uses 100% of table entries for
some nodes (≥ 30% of nodes have their tables full). This is
due to the fact that RPL, in the storing mode, pro-actively
maintains an entry in the routing table of every node on
the path from the root to each destination, which quickly
fills the available memory and forces packets to be dropped.
The difference between MHCL and Matrix is small: MHCL
stores only the IPtree structure, whereas Matrix stores IP-
tree and RCtree data; the latter is kept only temporarily
during parent changes in the collection tree, so its average
memory usage is low.

2We measured the routing table usage of each node in one-
minute intervals, then took the average over 20 minutes.

Table 2: Faulty network scenarios
σ\ε 10 sec. 20 sec. 40 sec.
1% Scenario 2 Scenario 3 Scenario 4
5% Scenario 5 Scenario 6 Scenario 7
10% Scenario 8 Scenario 9 Scenario 10
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Figure 7 illustrates the amount of control traffic in our
experiments (the total number of beacons sent during the
entire simulation). Matrix sends fewer control packet than
RPL, because it only sends additional beacons during net-
work initialization and in case of collection tree topology up-
dates, whereas RPL has a communication intensive mainte-
nance of downward routes during the entire execution time.
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Figure 7: Number of control packets.

Figure 8 compares RAM and ROM footprints in the proto-
col stack of CTP, RPL and Matrix. We can see that Matrix
adds only a little more than 7KB of code to CTP, allow-
ing this protocol to perform any-to-any communication with
high scalability. When compared with RPL, the execution
code of Matrix requires less RAM.

Our main result is illustrated in Figure 9, which com-
pares top-down routing success rate. We measured the total
number of application (ack) messages sent downwards and
successfully received by the destination.3 In the plot, “in-
evitable losses” refers to the number of messages that were
lost due to a failure of the destination node, in which case,
there were no valid path to the destination and the packet
loss was inevitable. The remaining messages were lost due
to wireless collisions and node failures on the packet’s path.

3We do not plot the success rate of bottom-up traffic, since
it is done by the underlying collection protocol, without any
intervention from Matrix .

C
od

e 
an

d 
m

em
or

y 
fo

ot
pr

in
t (

Kb
)

0
10

30
50 CTP

MATRIX
RPL

1.505 1.832
6.508

16.204
23.45

42.869

RAM ROM
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We can see that, when a valid path exists to the desti-
nation, the top-down success rate of Matrix varies between
95% and 99%. In the harshest faulty scenario 10, without
the local broadcast mechanism, MHCL delivers 85% of top-
down messages. With the local broadcast activated, the suc-
cess rate increases to 95%, i.e., roughly 2/3 of otherwise lost
messages succeed in reaching the final destination. RPL, on
the other hand, delivered less than 20% of messages in all
simulated scenarios, which occurs due to lack of memory to
store all the top-down routes.
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Figure 9: Top-down routing success rate.

5. RELATED WORK
AODV[17] and DSR[7] are traditional wireless protocols

that allow any-to-any communication, but they were de-
signed for 802.11 and require too many states or apply sev-
eral overheads on the packet header. In the context of low-
power and lossy networks, CTP[6] and CodeDrip[8] were de-
signed for bottom-up and top-down data flows, respectively.
They support communication in only one direction.

State-of-the-art routing protocols for 6lowPAN that en-
able any-to-any communication are RPL[19], XCTP[18], and
Hydro[3]. RPL allows two modes of operation (storing and
non-storing) for downwards data flows. The non-storing
mode is based on source routing, and the storing mode pro-
actively maintains an entry in the routing table of every
node on the path from the root to each destination, which
is not scalable to even moderate-size networks. XCTP is an
extension of CTP and is based on a reactive reverse collec-
tion route creating between the root and every source node.
An entry in the reverse-route table is kept for every data
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flow at each node on the path between the source and the
destination, which is also not scalable in terms of memory
footprint. Hydro protocol, like RPL, is based on a DAG (di-
rected acyclic graph) for bottom-up communication. Source
nodes need to periodically send reports to the border router,
which builds a global view (typically incomplete) of the net-
work topology.

Some more recent protocols [14, 13, 12] modified RPL to
include new features. In [14], a load-balance technique is
applied over nodes to decrease power consumption. In [13,
12], they provide multi-path routing protocols to improve
throughput and fault tolerance.

Matrix differs from previous work by providing a reliable
and scalable solution for any-to-any routing in 6LoWLAN,
both in terms of routing table size and control message over-
head. Moreover, it allocates global and structured IPv6 ad-
dresses to all nodes, which allow nodes to act as destinations
integrated into the Internet, contributing to the realization
of the Internet of Things.
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6. CONCLUSIONS
In this paper, we propose Matrix: a novel routing proto-

col that is built upon a data collection structure and is com-
prised of two phases: (1) network initialization, in which
hierarchical IPv6 addresses, which reflect the topology of
the underlying wireless network, are assigned to nodes in a
multihop way; and (2) reliable any-to-any communication,
which enables message and memory-efficient implementation
of a wide range of new applications for 6LoWPAN.
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