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ABSTRACT
In this work, we present Mobile Matrix, a routing protocol for

6LoWPAN that uses hierarchical IPv6 address allocation to perform

any-to-any routing and mobility management without changing

a node’s IPv6 address. In this way, device mobility is transparent

to the application level. �e protocol has low memory footprint,

adjustable control message overhead and achieves optimal routing

path distortion. Moreover, it does not rely on any particular hard-

ware for mobility detection, such as an accelerometer. Instead, it

provides a passive mechanism to detect that a device has moved.

We present analytic proofs for the computational complexity and

e�ciency of Mobile Matrix, as well as an evaluation of the protocol

through simulations. Finally, we propose a new mobility model, to

which we refer as cyclical random waypoint mobility model, that

we use to simulate mobility scenarios, where communication is car-

ried out in environments with limited mobility, such as 6LoWPANs

deployed in o�ce buildings, university campuses, concert halls

or sports stadiums. Results show that µMatrix deliveries 3x times

more packets than RPL for top-down tra�c over high mobility

scenario.
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1 INTRODUCTION
IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN)

is an IETF working group that de�nes standards for low-power

devices to communicate with Internet Protocol. It can be applied

even to the small devices to become part of the Internet of �ings

(IoT). It has de�ned protocols, including encapsulation and header

compression mechanisms, which allow IPv6 packets to be sent and

received over low-power devices. �ese protocols, such as CTP [12]

and RPL [24], typically build an acyclic network topology to collect

data, such as a tree or a directed acyclic graph. However, they do

not handle any-to-any communication or mobility [13].
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Mobility is a major factor present in everyday life. It makes life

easier and turns applications more �exible. �e usage of many

devices for IoT can bene�t from it, as is the case of today adoption

of smartphones and tablets. By extending IoT protocols to handle

mobility, IoT becomes even more ubiquitous.

Matrix (Multihop Address allocation and dynamic any-To-any

Routing for 6LoWPAN) [20] is a platform-independent routing

protocol for dynamic network topologies and fault-tolerant any-to-

any data lows in 6LoWPAN. Matrix uses hierarchical IPv6 address

allocation and preserves bi-directional routing.

We present Mobile Matrix (µMatrix), a solution for handling

mobility in 6LoWPAN built upon the Matrix protocol. It provides

the bene�ts from Matrix, including any-to-any routing, memory

e�ciency, reliability, communication e�ciency, hardware indepen-

dence while dealing with mobility e�ciently. It enables Matrix to

be used in scenarios and applications where mobility is present.

µMatrix handles mobility at the network layer, so the IPv6 ad-

dress of each node is assigned once and kept unchanged despite

mobility. In this way, routing and mobility management is transpar-

ent to the application level. �e proposed communication protocol

has low memory footprint, being suitable for low memory devices,

such as wireless sensor networks and IoT. Since there is an intrinsic

trade-o� between the delay to detect that a node has moved and the

number of control messages, µMatrix is able to tune the frequency

of control messages according to the application or the mobility

pa�ern. Moreover, µMatrix has optimal routing path distortion,

i.e., messages addressed to a mobile node, from anywhere in the

network, are sent along the shortest path from the source to its

current location, using its original IPv6 address.

To the extent of our knowledge, previous mobile routing pro-

tocols for 6LoWPAN have not used hierarchical IPv6 address allo-

cation, but a �at address structure, which incurs in more memory

consumption to store the bi-directional routes. On the other hand,

protocols for mobile ad hoc networks, like AODV [21] and OLSR [4],

have high memory footprint and control message overhead, which

makes them not suitable for low power devices or 6LoWPAN.

�e main contributions of this paper can be summarized as fol-

lows. We present µMatrix, a communication protocol that performs

hierarchical IPv6 address allocation and manages routing and mo-

bility without ever changing a node’s IPv6 address. �e protocol

has low memory footprint, adjustable control message overhead

and achieves optimal routing path distortion. We provide analytic

proofs for the computational complexity and e�ciency of µMatrix,

as well as an evaluation of the protocol through simulations. An

essential building block of µMatrix is the passive mobility detection

mechanism that captures changes in topology without requiring

additional hardware (e.g. accelerometer, GPS or compass).



Figure 1: µMatrix protocol’s architecture.

Moreover, we propose a new mobility model, to which we refer as

Cyclical RandomWaypoint mobility model (CRWP). In CRWP, nodes

are assigned to a home location and might make several moves

in random directions, connecting to the 6LoWPAN at di�erent at-

tachment points, and eventually return to their home locations.

Our motivation for proposing a new mobility model comes from

application scenarios, where communication is carried out in envi-

ronments with limited mobility, such as 6LoWPANs deployed in an

o�ce or school buildings, university campuses or concert halls or

sports stadiums.

2 DESIGN OVERVIEW
µMatrix enables any-to-any communication for mobile and static

nodes in 6LoWPANs. µMatrix manages mobile nodes without

changing its IPv6 address. Also, the protocol preserves all features

from previous implementation (such as memory e�ciency and

fault tolerance) [20]. Figure 1 presents the protocol’s architecture.

µMatrix lies at network layer with an underlying data collection

protocol (such as CTP or RPL). µMatrix has two planes: i) Control
plane able to split and distribute the available address space, man-

age route tables, and handle mobile nodes; ii) Data plane capable

on querying route tables and forward data and control packets.

µMatrix operation consists of the following phases:

1. Collection tree initialization (Ctree): An underlying routing

protocol (e.g CTP [12] or RPL [16]) creates a collection routing tree.

2. Descendants convergecast, IPv6 tree: once the collection tree

is stable, µMatrix builds an address hierarchy tree (IPtree) by using

MHCL algorithm [19, 20]. Initially, IPtree has the same topology as

Ctree
R

(top-down direction), but in runtime, they may di�er.

3. Mobilitymanagement: µMatrix manages the RCtree structure,

a tree that re�ects the topology changes due to nodes mobility.

4. Standard routing: bo�om-up routing follows the Ctree built in

phase 1, while top-down the IPtree. Any-to-any routing combines

both previous schemes, i.e., a packet �ows bo�om-up fashion until

a Least Common Ancestor (LCA) between the sender and receiver

and then it �ows top-down until the destination.

Figure 2: Reserve Trickle timer operation.

2.1 Mobility detection
Mobility detection is a key issue to handle mobile nodes on µMatrix.

If nodes by itself inform its motion (e.g. by using accelerometer or

GPS) to the protocol, then we refer to as active motion, otherwise if

the protocol infer the node movement, we refer to passive motion.

Trickle [17] algorithm passively detects topology changes. How-

ever, Trickle lacks in agility to detect changes in dynamic network

and mobile nodes. We propose Reverse Trickle timer that operates

similarly to the standard algorithm, but in reverse order.

Reverse Trickle introduce a control message and three param-

eters: i) hasMoved beacon; ii) Imax and Imin the maximum and

minimum time interval to send a hasMoved beacon; iii) Ik the num-

ber of a�empts to query a node before declaring a inconsistency.

�ese parameters must de�ned by the network operator before.

Figure 2 shows the Reverse Trickle procedure. First, a node starts

sending unicast hasMoved beacons to its parent. Imax is the interval

between two consecutive hasMoved. If the node did not receive an

ack for a hasMoved beacon, then it sets the interval to Imin . A�er

Ik unsuccessful a�empts, the node knows that someone moved.

�us, the node can take actions, for example, properly perform a

handover to another parent and then the procedure restarts. Note

that by se�ing the Reverse Trickle parameters, the network operator

should consider the trade-o� between delay to detect mobility and

number of beacons. For a smaller delay to mobility detection, Imax
must be tuned to small values at cost of more hasMoved beacons.

In our experiments (Section 5) reverse trickle parameters were set

according to application data rate (Table 1).

In [18], the authors argue that a common modi�cation to sup-

port mobility is change the control message periodicity. �e typical

approach uses a simple periodic timer or the standardized Trickle

timer. While reverse trickle waits for Imax +Tk × Imin to detect a

topology change, where Imin � Imax , the periodic and standard-

ized Trickle approaches wait for at least 2 × Imax .

2.2 Control Plane
2.2.1 Routing data structures. µMatrix maintains three routing

trees structures: i) Ctree: a collection tree built by the underlying

collection protocol; ii) IPtree: an IPv6 hierarchical tree created

by MATRIX initialization and kept static a�erward, except when

new nodes join the network; iii) RCtree: a tree that re�ects the

topology changes caused by node mobility.

Initially, IPtree = Ctree
R

and RCtree = ∅ (see Figures 3(a)(b)).

Whenever a topology change occurs due to mobility in Ctree, the
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Figure 3: Routing data structures: Ctree, IPtree, and RCtree.

new link is added into RCtree, and it is maintained while the change

remains, therefore RCtree = CtreeR \ IPtree (see Figures 3(c)(d)).

RCtree is not essentially a tree since it contains only reversed links

in Ctree but not in IPtree. Nevertheless, RCtree∪IPtree is, in fact, a

tree, which µMatrix uses to downward routing. Each node η keeps

the following information to build and maintain theses trees:

• CTparent(η): the ID of the current parent of a node η in

the dynamic collection tree;

• PRVparent(η): the ID of η’s previous CTparent(η);
• IPparent(η): the ID of the node that assigned to η its IPv6

and IP range;

• IPchildren(η): the standard (top-down) routing table with

IPv6 ranges for one-hop descendants of η in IPtree;

• Mtable(η): a temporary alternative routing table for mobil-

ity management. Each entry has an IPv6 range, next hop,

and Time Has Lived (THL) �elds.

µMatrix introduce one routing packet and one parameter to con-

trol exchanging topology information and maintain the Mtables:
i) nodeInfo routing frame has 7 �elds: seqNum, IPv6 Node, IP

range, IPv6 IPparent, CTparent, TTL, and Type. �e �elds are self-

explanatory, except by the type �eld, which speci�es if routing

frame is a keepRoute.{IP ONLY or IP AND RANGE} entry inser-

tion, or rmRoute to remove a entry. In the following, we will use

keepRoute for short; ii) δ parameter speci�es the time between

sending two consecutive.

In mobile scenarios, a node �llsMtable upon receiving keepRoute
beacons from mobile nodes. �e node keeps Mtable entries as long

Figure 4: Simpli�ed hierarchical address assignment with 8-
bit available address space and 6.25% of address reserve for
delayed nodes. Inside the nodes its label and assigned IP,
the % next the nodes express the approximate sub-tree size.
�ick downwards arrows indicates the available IP range
fairly distribution. In the rightmost,Mtable a�er B moves.

as it receives keepRoute. Otherwise, it uses a THL mechanism to

remove entries (see Sec 3.1 for memory footprint analysis). In static

scenarios any node stores one-hop neighborhood information in

IPparent(η), this requires O(k) entries, where k is the number of

node’s children. �is memory footprint is be�er than state-of-the-

art, e.g., RPL would need at least 1 routing entry for every child in

a node sub-tree for top-down routing fashion

2.2.2 IPv6 multihop host configuration. µMatrix relies on an

underlying collection routing protocol to build the Ctree. Once the

Ctree is stable
1
, the address space available to the border router, e.g.,

the 64 least-signi�cant bits of the IPv6 address (or a compressed 16-

bit representation of the la�er), is hierarchically partitioned among

nodes in the Ctree. �e (top-down) address distribution is preceded

by a (bo�om-up) convergecast phase, in which each node counts

the total number of its descendants and propagates it to its parent.

�us node knows how many descendants each child has. Such

information is required to distribute IP ranges in a fairly way. As

result of this procedure is obtained the IPtree.

Figure 4 most le� shows the process. First, it is created the

Ctree (upwards arrows), and then, a�er the Ctree stabilization,

the convergecast phase occurs allowing nodes to know the size of

theirs sub-tree (% next to each node). Next, the root starts the IP

distribution by auto-se�ing its IP (e.g. the �rst available IP from

range) and then reserving a portion of the range for delayed nodes.

Next, the node distributes the remaining range fairly between its

children (e.g. in Figure 4 B receives 70% of available range, i.e., from

16 to 183). Finally, each node repeats the IP distribution process.

2.2.3 Mobility management. A�er host con�guration, µMatrix

starts the mobile engine allowing nodes to move around the 6LoW-

PAN. Mobile engine uses a �nite state machine (Figure 5). Each

node can be in one state depending on its previous condition and

the knowledge about its neighborhood. �e engine also uses Re-

verse Trickle to recognize mobility and transit among states. In the

following, we discuss the actions taken in each of those states.

1
A node is stable if it reaches k times the maximum maintenance beacon period of

Ctree protocol without changing its parent. We use Trickle [17] as beacon scheme.
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Each node begins at Home Location (HL) state. In HL, the nodes

start the reverse trickle with itsCTparent(η) (initially,CTparent(η) =
Pparent(η) see Figure 6(a)). When reverse trickle identi�es a mo-

bility event, then the node transit to Someone Moved (SM) state.

When a node is at SM state, it knows that someone moved, but

it does not know if itself or its parent moved. �ere are at last

two ways to automatically �nd out who moved. First, a node pro-

actively queries its children (IPChildren(η)), if no one answer then

the node moved; otherwise the parent moved. Second, a node must

wait for a period (e.g. one Imax ) to receives hasMoved beacons from

its children and then infer who moved. We use the second approach

in our implementation. A�er discovering who moved, the node

goes to Node Moved (NM) or Parent Moved (PM) state.

Several actions are taken when a node reaches NM state. Firstly,

the node disables the IPChildren(η) table due to the node new

position in the Ctree. Next, the Mtable is cleaned, because it must

be outdated. �en, the node triggers the new parent discovery

from underlying collection protocol. When the node is a�ached

again to the Ctree, it restarts reverse trickle with new CTparent

and begins sending keepRoute.IP ONLY at a frequency of δ to

its IPparent. Figure 6(a)(b) shows this situation. When B sends

keepRoute beacons to A, when B moves and �nd a new CTparent.

�e beacons travel upward to the LCA(A, B) and then downwards

to the node A.

When a node reaches PM, this means that its parent moved.

�en, the node triggers the parent discovery mechanism. When

it is a�ached again to Ctree, it restarts the reverse trickle and be-

gins sending two keepRoute beacons (if it has children the beacon

contains IP AND RANGE, otherwise IP ONLY ) at a frequency of δ to

IPparent and its grand IPparent. Figure 6(c)(d) illustrate this situa-

tion. If B moves, then C eventually reaches PM state, and then C

begins sending keepRoute beacons to its дrandIPparent = A. �e

messages travel to LCA(A, C) and then to the ultimate destinations.

Eventually, nodes return to their home position being a�ached

again to its IPparent in Ctree. �is situation also triggers some

actions. First, the node stops to sending keepRoute beacons and

sends to its very previous CTparent = PRVparent a rmRoute con-

taining its information to properly remove outdated routes nodes’

Mtable . Also, the returned node restarts the reverse trickle with

its IPparent.

Optional features are made to improve the mobile node manage-

ment. Note that if a node is a�ached to a sequence of CTparent

before returning to home location, then several states will be in-

stalled in the network. Although the Mtable’ THL �eld exists to

remove inconsistent entries, it is possible to send rmRoute beacons

to each node’ PRVparent to eliminate such inconsistency.

(a) µMatrix in a static situation

before B (at HL state) moves.

(b) B moves, then it transit to

NM state and starts sending

keepRoute beacons.

(c) B a non leaf node before move. (d) B moves, then C transits to PM state

and start sending keepRoute beacons.

Figure 6: Mobile engine operation a�er mobility events.

Discussion: note that a sub-tree can move and nodes still hear

each other. For instance, in Figure 6(c) suppose A and B move

together. �en, A and C eventually will transit to PM, while B and

C’s sub-tree remain in HL. In this case, the LCA has two Mtable
entries matching with C’s sub-tree, but one more restrictive than

other. �us, the LCAs play a key role, which they always route

through the most restrictive Mtable range match available.

Also, note that µMatrix preserves locality when manages mobile

nodes since no MTables needs updates above LCA. Figure 4 (right-

most) illustrates this situation. When node B moves, it transits to

NM state, Mtables comprised in the path B to A = IPparent(B) =
LCA(B, IPparent(B)) receive updates. B movement causes E and

F to transit to PM state. �en, E and F �nd new routes and up-

date the Mtables between them and its grandIPparent = A. Note

that Mtable(C) requires only one entry for both E and F sub-trees

because their IP range are contiguous and an aggregation was made.

2.2.4 Loop avoidance. dynamic links and mobile nodes cause

topology route information to become outdated, which causes rout-

ing loops [12]. µMatrix uses data path validation and adaptive

beaconing to detect loops CTP and RPL [12, 16]. Besides that, if a

node receives more than one unique control packet
2

in a short time,

then this indicates an inconsistency in the tree, which triggers the

2
Together the keepRoute �elds (see Sec 2.2.1) denote a unique packet instance.



control packet suppression and the underlying protocol route up-

date. Also, Mtable and keepRoute beacon have respectively Time

Has Lived (THL) and Time To Live (TTL) �eld, which it is used to

remove inconsistent routes and messages from the network.

2.3 Data Plane: any-to-any routing
�e Forwarding Engine (see Figure 1) is responsible for data for-

warding. Any-to-any routing combines bo�om-up forwarding,

until the LCA between the sender and receiver, and then top-down

forwarding to the destination. Upon receiving a data packet, the

node checks if the message is for itself. Second, the node tries to

match the destination with an entry Mtable . �ird, if any Mtable
entries match with the target address, then the node checks if the

packet destination falls within some range in r ∈ IPchildren(η),
if positive match, then the node forwards the packet downwards

according. Finally, if all previous a�empts fail, then the node sends

the packet upwards using CTparent(η).

3 COMPLEXITY ANALYSIS
For the formal analysis, we assume a synchronous communication

message-passing model with no faults. �us, all nodes start exe-

cuting the algorithm simultaneously and the time is divided into

synchronous rounds, i.e., when a message is sent from node v to

its neighbor u in time-slot t , it must arrive at u before time-slot

t + 1, and d(v,u) is the shortest path length between v and u in

Ctree ∪ IPtree ∪ RCtree . �e performance of µMatrix in faulty

scenarios is analyzed through simulations in Section 5.

3.1 Memory footprint
As described in Section 2, the temporary routing information needed

to maintain mobility is stored in the Mtable data structure of some

nodes. Each entry is kept for at mostTTLmax seconds, a time inter-

val pre-con�gured by the network operator, and is deleted unless a

keepRoute beacon is received. In the following theorem, we bound

the total number of Mtable entries in the network, necessary to

manage routing of each mobile node µ ∈ CTree .

Theorem 3.1. �e memory footprint to manage the mobility of
one node µ ∈ Ctree with µMatrix isM(µ) = O(depth(Ctree)).

Proof. Consider a node µ ∈ Ctree that has moved from its

home location in time-slot t0 and returned in time-slot tf . Consider

the (permanent) IPparent(µ) and the (temporary) CTparenti (µ) in

time-slot t0 < ti < tf . A routing entry for the temporary location of

µ will be stored in theMtable of every node comprising the shortest

path between IPparent(µ) and CTparenti (µ). Moreover, if µ has

descendants in the IPtree, i.e, k(µ) = |IPchildren(µ)| > 0, then each

node c ∈ IPchildre(µ) will send a temporary (bi-directional) route

request to their respectiveCTparenti (c), and a (temporary) routing

entry will be stored in the Mtable of every node comprising the

shortest path between CTparenti (c) and IPparent(µ). �erefore,

the total memory footprint to manage the mobility of a node µ is:

M(µ) = d(CTparenti (µ), IPparent(µ)) + 1

+
∑

c ∈I Pchildren(µ)
(d(CTparenti (c), IPparent(µ)) + 1)

≤ (k(µ) + 1) × (depth(Ctree) + 1)
= O(depth(Ctree)) �

�eorem 3.1 implies that the total memory footprint to manage

the mobility ofm nodes is O(m × depth(Ctree)). Note that µMatrix

preserves locality when managing mobile routing information of

a node µ, since no Mtable needs to be updated at nodes above the

LCA(IPparent(µ),CTparent(µ)).

3.2 Control message overhead
Control messages used by µMatrix are comprised of three types:

(1) those used by Matrix to set up the initial IPtree and address

allocation; (2) hasMoved beacons, de�ned in Section 2.1; and (3)

keepRoute beacons, de�ned in Section 2.2.1.

For any network of size n with a spanning collection tree Ctree

rooted at node r , the message and time complexity of Matrix pro-

tocol in the address allocation phase is Msд(Matrix I P (Ctree))
= O(n) and T(Matrix I P (Ctree)) = O(depth(Ctree)), respectively,

which is asymptotically optimal, as proved in [20]. Next we bound

the number of control messages of type (2) and (3).

Theorem 3.2. Consider a network with n nodes, with a spanning
collection tree Ctree rooted at node r , andm mobility events, consist-
ing ofm nodes µi , changing location during time intervals ∆i ≤ ∆
time-slots. Moreover, consider the hasMoved beacon parameters Imin ,
Imax and Ik and the keepRoute beacon interval of δ time-slots. �e
control message complexity of µMatrix to perform routing under mo-
bility ofm nodes is

Msд(µMatrix(Ctree)) = O

(
m × Ik
Imin

+
n

Imax

)
+ O

(
m × ∆
δ

depth(Ctree)
)
.

Proof. Firstly, we bound the number of hasMoved beacons,

which are sent periodically by all nodes in order to detect mobility

events. As described in Section 2.1, when there is no mobility, the

periodicity of hasMoved beacons is 1/Imax . If some node µ has

moved (an ack is lost), then Ik messages are sent in intervals of

Imin time-slots. Using the fact that the network is a tree and the

number of edges is O(n), this gives a total of messages

Msд(µMatrixhM(Ctree)) = O
(
m × Ik
Imin

+
n

Imax

)
.

Now, we bound the number of keepRoute beacons. As de-

scribed in Section 2, mobile nodes send periodic keepRoute bea-

cons at a frequency of δ to keep the Mtables up-to-date. Con-

sider a node µ ∈ Ctree that has moved from its home location in

time-slot t0 and returned in time-slot tf . Consider the IPparent(µ),
CTparenti (µ) in time-slot t0 < ti < tf , and ∆ = tf − t0. When µ is

a�ached to a CTparenti (µ), µ sends keepRoute beacons at a rate

of δ for at most ∆ time-slots, such beacons travel the shortest path

|(CTparenti (µ), IPparent(µ))| ≤ 2 × depth(Ctree). Furthermore, if



µ has descendants, i.e., k(µ) = |IPchildren(µ)| > 0, then each node

c ∈ IPchildren(µ) will also send keepRoute beacons at a rate of δ
for at most ∆ time-slots, such beacons will travel the shortest path

|(CTparenti (c), IPparent(µ))| ≤ 2 × depth(Ctree). �erefore, the

total control overhead to manage the mobility of a node µ is ≤ 2

×depth(Ctree)(k(µ) + 1)∆/δ , which results in

Msд(µMatrixkR(Ctree)) = O
(
m × ∆
δ

depth(Ctree)
)
.

Finally, the total control overhead is bounded by:

Msд(µMatrix) =Msд(µMatrixhM) +Msд(µMatrixkR) �

Once again µMatrix preserves locality when managing mobile

routing state of a node µ since no messages need to be sent to nodes

above the LCA(IPparent(µ),CTparent(µ)).

3.3 Routing path distortion
We analyze the route length of messages, addressed to mobile nodes.

Consider the underlying collection protocol (e.g. CTP or RPL),

which dynamically optimizes the (bo�om-up, or upwards) links in

the collection tree CTree , according to some metric, such as ETX.

We de�ne an optimal route length as the distance of the shortest path

between (s,d), comprised of the upwards links of the collection tree

CTree and the downwards links of the union of the IPv6 address

tree and the reverse-collection tree, i.e., IPtree ∪ RCtree .

Theorem 3.3. µMatrix presents optimal path distortion under
mobility, i.e., all messages are routed along shortest paths towards
mobile destination nodes.

Proof. Consider a mobile node µ ∈ CTree , which has moved

from its home location in time-slot t0. Messages addressed to µ and

originated by some node η ∈ Ctree in time-slot ti > t0 can belong

to tra�c �ows of three kinds: (1) bo�om-up: LCAi (µ,η) = µ; (2)

top-down: LCAi (µ,η) = η; and (3) any-to-any: LCAi (µ,η) , µ , η.

In case (1), messages are forwarded using the underlying collection

protocol, using the upwards links of the collection tree CTree, which

is optimal. In case (2), messages are forwarded using Mtables of η
and its descendents, until reaching the mobile location of µ in some

time-slot tf > t0. �is path is comprised of the downwards links

of IPtree ∪ RCtree in time-slot t0 < ti ≤ tf , which is the optimal

route from η to the mobile location of µ in that time-slot. In case

(3), the route between η and LCAi (µ,η) falls into the case (1) and

the route between LCAj (µ,η) and µ falls into the case (2), for some

t0 < ti ≤ tj ≤ tf , which is optimal. �

4 CRWP MOBILITY MODEL
Here, we propose the Cyclical Random Waypoint Mobility Model

(CRWP), a mobility model based on the Random Waypoint [2].

CRWP is useful to model scenarios where some of the entities

move to di�erent destinations, and eventually, they return to their

initial positions. Which is the case of people and their portable

devices in o�ces, universities, hospitals, factories, etc.

In CRWP, the entities move independently to random destina-

tions and speeds as in RWP. When an entity arrives at the destina-

tion, it stops for a given time Tpause . A di�erence in CRWP is that

a�er n chosen destinations, the mobile entity returns to its initial

position. Besides that, only k% of mobile entities are outside of their

Table 1: Simulation parameters

Simulation parameter Values
Simulation time 1.5 h

# Nodes 1 center root, 100 nodes in grid

Mobility Model CRWP

Application data packets 20 pkt/node, Rate = 1 pkt/min

Radio environment 50 m UDGM constant loss

Area of deployment 400 m ×400 m

Reverse Trickle Imax = 60 s, Imin = 1 s, Ik = 3

RPL Trickle Imax = 60 s

keepRoute beaconing period δ = 60 s

Mtable TT Lmax = 90 s, Size = 20 entries

RPL downwards table Size = 20 entries

# mobility traces 10 traces/scenario

Number of experiments 10 runs/trace

Node Speed constant 4 m/s

Tpause constant 300 s

# node stops Uniform Dist. in [1, 3] stops

Low Moderate High
PerMobNode 5% 10% 15%

initial position in each instant of time. CRWP has four parameters:

i) PerMobNodes: maximum percentage of entities that are mobile

in each instant of time; ii) Stops: number of stops that the mobile

entity do before returning to its original position; iii) Speed: speed

which the mobile entity moves; iv)Tpause : the amount of time that

the entity stays in a destination position.

5 SIMULATION RESULTS
We implement µMatrix as a subroutine of collection protocol avail-

able in ContikiOS [7] and the experiments were run on Cooja [9].

We compare µMatrix with ContikiOS’ RPL implementation. We

use the BonnMotion [1] to implement CRWP as well as to generate

and analyze mobility traces. We simulated four di�erent scenarios.

�e �rst scenario represents the static network, in which nodes

do not move. �e remaining represent mobility scenarios named

low, moderate, and high with mobile nodes. Table 1 lists the default

simulation parameters used for each scenario.

On top of the network layer, we ran an application, in which

each node sends 20 data packets to the root. Upon receiving a data

packet, the root con�rms to the sender with an ack packet that

has the size of a data packet. �e application waits for 10 min for

protocols initialization and stabilization before it starts sending data.

�e nodes start sending their data in a simulation time randomly

chosen in (10, 20] min. �e mobility traces were con�gured to start

a�er the stabilization time. Additionally, we generate 10 mobility

traces for each scenario. Each trace and the static scenario were

run 10 times, totaling 3010 runs. In each plot, the bars represent the

average, and the error bars the con�dence interval of 95 %, and the

curves are the maximum table usage for a given mobility scenario.

Mobility scenario: We simulated a scenario, wheren = 100 people

are assumed to be in an o�ce and can move around and return to

a prede�ned home position. �is scenario is expected to present

relatively low mobility, thus in our set up, k % of the nodes are

moving at any moment in time, where k ∈ {5, 10, 15}. Table 2

presents some mobility metrics [1] for each scenario. We highlight

that link breaks play a key role in the performance of the network



Table 2: Mobility Metrics

Mobility Metrics Low Mob. sce. Mod. Mob. sce. High Mob. sce.

Avg. Link Breaks 1621 3057 4838

Avg. Link duration 761.90 457.4 345

Avg. Degree 4.12 4.36 4.44

Avg. Time to link break 227.6 216.1 204.5

protocol, note that high mobility scenario presents up to 20 % more

topology changes than in low mobility. As expected, the average

link duration decrease when PerMobNode increases. �e averages

of node degrees and the time to a link break do not show much

variability, they re�ect the simulation parameters, where the node

deployment is a grid and time for a link to break is less thanTpause .

5.1 Results
In Figure 7, we show the Cumulative Distribution Functions (CDFs)

of the percentage of downward routing table usage among nodes

for given mobility scenario. In static scenarios, all µMatrix nodes

use up to 25% of available downwards route entries, while RPL

< 75% of nodes use up to 25% of entries. Indeed, for some RPL

nodes, 100% of table entries are used. Usually, those nodes that use

more memory are near to the root, and they play a fundamental role

in top-down routing. If they have a full downward routing table,

then the tra�c pa�ern top-down su�ers from poor reliability, and

some nodes may be unreachable. In mobility scenarios, µMatrix

also presents more e�cient memory footprint, and the di�erence

grows up in high mobility scenarios, where > 50% of RPL nodes

have all table entries busy, while µMatrix nodes use at most 70% of

downwards available routes.

Figure 8(a) shows the amount of control tra�c overhead of the

protocols (the total number of beacons sent during the entire sim-

ulation). RPL sends fewer control packets than µMatrix, but the

di�erence between them does not exceed 7.4%. µMatrix sends more

beacons to react to topology changes quickly. Reverse Trickle is

responsible for �ring most of µMatrix beacons. µMatrix allows

tuning the Reverse Trickle �re rate to reduce the sending beacons,

but note that the adjustment reverse trickle faces a trade-o� be-

tween quick mobility discovery and control overhead. In Table 1,

we set Imax of RPL and µMatrix evenly and close to data packet

rate, which gives to the protocols the fair opportunity to identify

topology changes and react to them.

Packets Reception Rate (PRR) is a metric of network reliability.

It computes the number of packets received successfully over all

packets sent. Figure 8(b) shows the PRR in bo�om-up data tra�c.

In all scenarios, µMatrix presents higher PRR rate than RPL. When

µMatrix realizes that a topological change happened, it quickly

triggers the underlying route discovery, and as a consequence,

bo�om-up routes are rapidly rebuilt, and the reliability increases.

Figure 8(c) shows the PRR for top-down data tra�c. We can see

that, when there is no mobility, µMatrix presents 99.9% of success

rate. In mobility scenarios, µMatrix PRR decreases slowly when

more mobility is allowed. In the harshest mobility scenario, the

PRR > 75%. RPL, on the other hand, su�er from poor reliability,

delivering < 21.1% in all simulated scenarios, which occurs due to

the lack of memory (see Figure 7) to store top-down routes.

Figure 7: CDF of routing table usage. For µMatrix Mtable +
IPchildren, for RPL only downwards routing table. �e max-
imum table size is 20.

6 RELATEDWORK
In the world of tiny (IoT) several mobility-enabling routing proto-

cols have been proposed. Firstly we highlight µMatrix’s features

against its original static version [20]. �en, we survey recent pro-

tocols in the context of 6LoWPAN and put them in perspective with

µMatrix.

Matrix was originally proposed without support for mobility[20].

If a node moved from its home location, the hierarchical IPv6 ad-

dress allocation would become invalid and compromise downward

routing.Although RPL [24] is the standard protocol for 6LoWPANs,

it presents limitations, for example, in mobility scenarios, scal-

ability issues, reliability and robustness for point-to-multipoint

tra�c [13, 20]. Most recent mobile-enabled routing protocols are

RPL extensions. �ey deal with mobile issues, but they do not han-

dle RPL drawbacks. Co-RPL [11] provides mobility support to RPL

but without Trickle. �is turns Co-RPL more responsive but has

higher overhead. MMRPL [5] modi�es the RPL beacon periodicity

by replacing the Trickle mechanism with a Reverse Trickle-Like.

�eir Reverse Trickle decays exponentially, while our approach

quickly goes to the minimum a�er an unacknowledged beacon.

MMRPL also needs some static nodes. In ME-RPL [8], static nodes

have higher priority than mobile ones. ME-RPL requires some

�xed nodes. �e memory requirement to downward routes is still

prohibitive. mRPL [10] proposes a hand-o� mechanism for mobile

nodes in RPL by separating nodes into mobile (MN) or serving

access point (AP). �ey use smart-HOP algorithm on MN nodes to

perform hand-o� between AP.

XCTP [23] extends CTP to support bidirectional tra�c. XCTP

does not support IPv6 addressing and any-to-any tra�c. Hydro [6]

�lls the gap of any-to-any tra�c, but it requires static nodes with a

large memory to perform the routing and support mobility nodes.



(a) Number of control packets (b) Bo�om-up routing success rate. (c) Top-down routing success rate.

Figure 8: Simulation experiments

Table 3: Routing protocol properties

Feature µMatrix RPL Co-RPL MMRPL ME-RPL mRPL DMR Hydro XCTP

Bo�om-p " " " " " " " " "

Top-down " " " " " " " "

Any-to-any " " " " " " "

Address Allocation "

IPv6 support " " " " " " "

Memory e�ciency "

Fault Tollerance " "

Local Repair "

Topological changes

Reverse

Trickle

Trickle

Periodic

�xed

Reverse

Trickle-like

Trickle Trickle Trickle Periodic �xed Trickle

Constraints

Nodes should

return to

home location

Need static

nodes

Need static

nodes

Need static

nodes

Need static

nodes

Need static

nodes

Mobile IP [22] and Hierarchical Mobile IPv6 (HMIPv6) Mobility

Management [3] are standards for IPv6 networks for handling local

mobility. However, they are not designed for 6LoWPANs, they do

not present a mobility detection or adjustable timers. LOAD [15]

and DYMO-Low [14] are 6LoWPAN protocols inspired in AODV

and DYMO, but they are not suitable for mobile networks.

Table 3 summarizes properties of the related protocols.

7 CONCLUSIONS
In this work, we presented µMatrix: a memory e�cient routing pro-

tocol for 6LoWPAN that performs any-to-any routing, hierarchical

address allocation, and mobility management. As a building block

of µMatrix, we proposed a passive mobility detection mechanism

that captures topological changes without requiring additional hard-

ware. Finally, we introduced the CRWP, a mobility model suited for

scenarios with mobile nodes that have cyclical movement pa�erns.

As future work, we plan to run experiments with physical devices

and extend experimental evaluation to more mobile models, such

as faulty communications scenarios.
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