

Maio, 2017.

T-MAPS: Modelo de Descrição do Cenário de Trânsito Baseado no Twitter

Bruno P. Santos
Paulo H. L. Rettore
Heitor S. Ramos
Luiz F. M. Vieira
Antonio A. F. Loureiro

Conteúdo

Contextualização, Motivação e Contribuições Imprecisão, viés dos dados, inconsistências, atribuição espaço-temporal.

Outros trabalhos e Próximos passos



Fontes de dados, período, cobertura espaço-temporal, correlação com HERE Maps

T-MAPS, serviço de direções e sentimento de rotas

- A qualidade de vida em uma cidade é, em parte, reflexo da mobilidade que ela oferece.
- A compreensão da mobilidade no trânsito, tem despertado o interesse dos governos e da sociedade acadêmica e empresarial.

- A obtenção de acesso a dados é fundamental para compreender o cenário de trânsito.
 - Loops indutivos (velocidade, densidade e fluxo)
 - Câmeras de trânsito
 - Traces e matrizes de origem e destino

- A obtenção de acesso a dados é fundamental para compreender o cenário de trânsito.
 - Loops indutivos (velocidade, densidade e fluxo)
 - Câmeras de trânsito
 - Traces e matrizes de origem e destino

✗ O livre acesso aos dados é um grande desafio, pois eles são controlados por entidades privadas ou governamentais

- Uma alternativa de baixo custo para obtenção de dados são as Mídias Sociais Baseadas em Localização (LBSM)
 - Ex: *Twitter e Foursquare*

Neste trabalho, estudamos como dados obtidos do Twitter se relacionam com o cenário real do trânsito

- Caracterização de dados do Twitter, como fonte de dados para descrever o cenário de trânsito
- Desenvolvimento do T-MAPS como um modelo de descrição do cenário de trânsito baseado em dados do Twitter.

Coleta dos dados

Usuários comuns X Usuários especializados

Coleta dos dados

Usuários comuns X Usuários especializados

Nome da conta	# tweets
@511NYC	126925
@TotalTrafficNYC	20267
@WazeTrafficNYC	7850
•••	•••
@NYC DOT	3680
Total de 21 contas:	655K

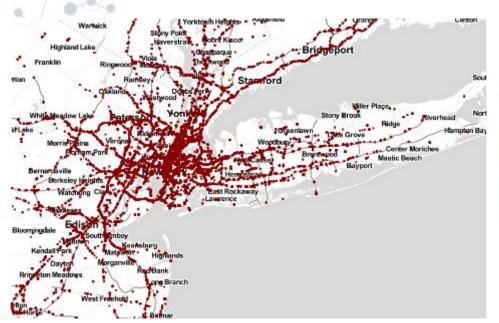
Condições do trânsito

Horário do <u>tweet.</u>

Descrição da localização e, em geral, geo-referência.

@511NYC

Coleta dos dados Cobertura **Espacial**



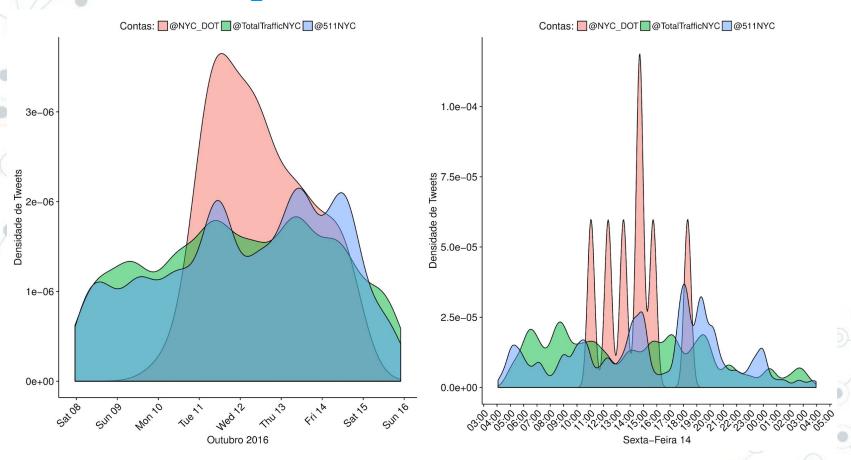
Warrier Bails Arrows Barrier Warrier Barrier B

@TotalTrafficNYC

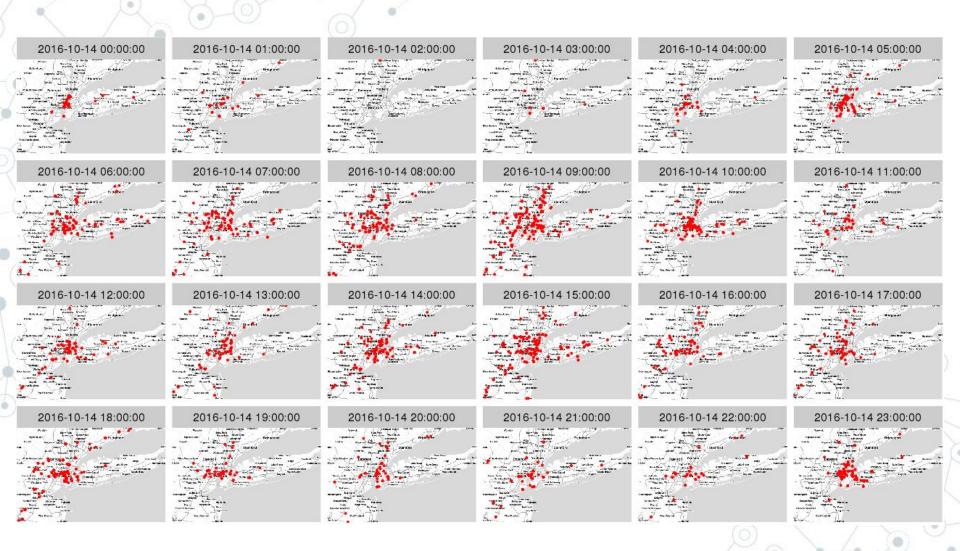
Tweets em NY

Cobertura espacial de duas contas em NY

Coleta dos dados Cobertura **Temporal**

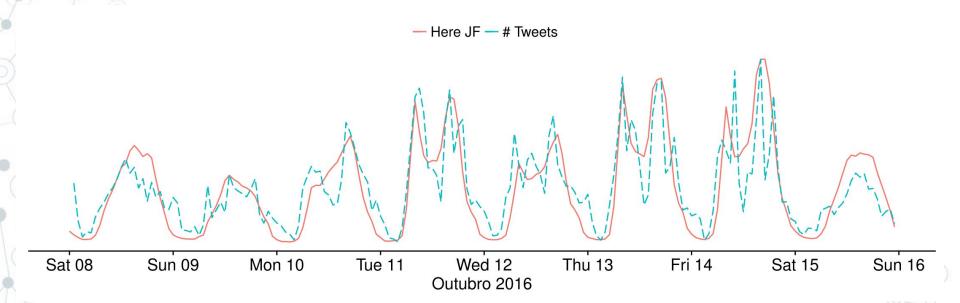


Cobertura temporal de três contas



Coleta dos dados

Existe correlação entre *tweets* e trânsito?



Correlação de Spearman $\, \rho = 0.81 \,$

Imprecisão

Dados podem ser incompletos, vagos ou ter níveis granularidade

Viés dos usuários

Usuários comuns vs usuários especialistas. Interesses prorios.

Inconsistências

Dados conflitantes ou fora de ordem

Atribuição espaço-temporal

Sem geolocalização, o dado diz respeito ao futuro ou passado?

Imprecisão - Incompleto

Agora 8:00AM um acidente na Av. Antônio Carlos #BH #trafegoRuim #asustado

- Quando?
- Qual é o evento?
- Sentimento?
- Condições do trânsito?

- **✗** Geolocalização
- ✗ Descrisão textual incompleta

Imprecisão - Vago

Agora 8:00AM um acidente na Av. Antônio Carlos #BH #trafegoRuim #asustado

- Quando?
- Qual é o evento?
- Sentimento?
- Condições do trânsito?

Qual ponto da Av.?

* tweet limitado (150 carac.)

Imprecisão - Granularidade

Total Traffic NYC

@TotalTrafficNYC

Accident in #Harlem on The Harlem River Dr SB at The Willis Ave Br, stop and go traffic back to 5th Ave, delay of 2 mins #traffic

7:47 AM - 14 Oct 2016 · Manhattan, NY, United States

12h47 Área Hospitalar: Trânsito intenso nos dois sentidos da Alfredo Balena.

12:47 PM - 2 May 2017

Granularidade **Apresentam informações suficientes** para descrever precisamente:

- Local
- Sentido
- o gravidade, etc..

Granularidade **Apresentam informações suficientes** para descrever uma visão macro dos trânsito

Aspectos dos dados Viés dos usuários

- Visão de um engarrafamento
 - O Usuário de uma metrópole X de um vilarejo
- Foco de informação
 - Contas de usuários especialistas
 - Ex: jornais e FM

- O trânsito é intenso para um e normal para outro ?
- Informação direcionada

Atribuição espacial e temporal

(66

Atribuir um tweet a um ponto do tempo e do espaço pode não ser trivial <u>mesmo que</u> <u>a informação esteja presente.</u>

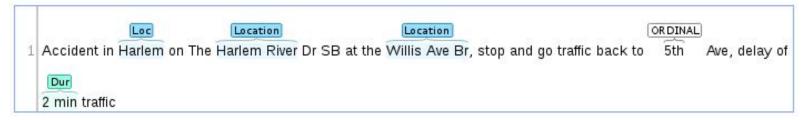
X X X V S B R C 2 0 1 7

Atribuição espacial e temporal

- O Um tweet geralmente é
 - O Desestruturado, Limitado (impreciso, tamanho, coerência)
 - Subjetivo:
 - "R." significa Rua ou Rodovia?
 - Possui um timestamp
 - Faz sentido para o momento do evento?
 - Qual é a validade de uma publicação?

Atribuição espacial e temporal

Named Entity Recognition:



http://nlp.stanford.edu:8080/corenlp/

- Processo de modelagem
 - 1. Aquisição de informação
 - 2. Filtragem e fusão de dados
 - 3. Métricas de custo
- Avaliação
 - 1. Serviço de rotas
 - 2. Serviço de sentimento das regiões

Modelagem e avaliação do Twitter Maps Passo 1 - Aquisição de informações

Cidade de Nova Iorque

Dados de plataformas LBSM

Passo 2 - Filtragem e fusão dos dados

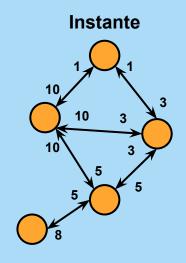
G(V,A)

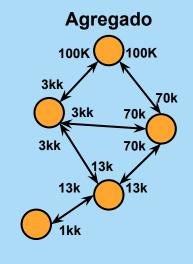
- V(G) são as divisões da região
- A(G) são arestas em ligam regiões adjacentes

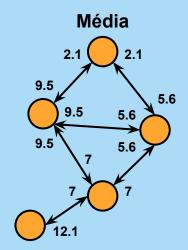
- Atribuição espacial, temporal
- Filtragem para obter dados da região
- Remoção de dados inconsistentes

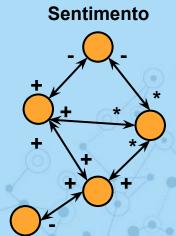
Passo 3 - Fusão dos dados e métricas de custo

(Uma descrição do cenário de trânsito)

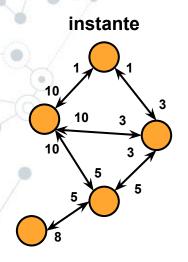


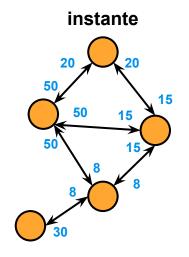


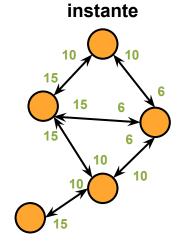




discretização do tempo - Métrica - Instantâneo





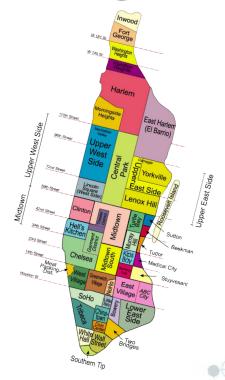


t

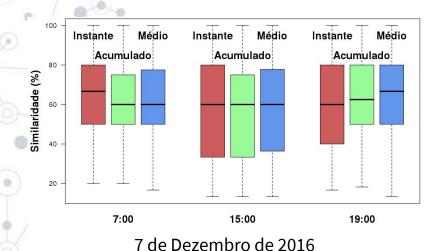
$$t + 1$$

X X X V S B R C 2 0 1 7

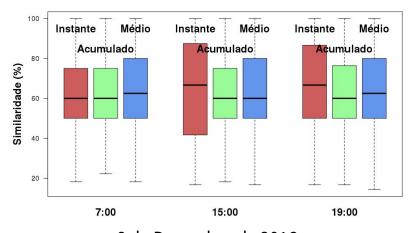
- Manhattan (região de interesse)
 - 29 divisões (unidades administrativas)
 - 21 contas especialistas do Twitter.
 - ~ 280 K tweets (geo-localizados)
 - Outubro Dezembro de 2016
- T-MAPS
 - Aplicação do algoritmo de Dijkstra
- Google Directions (usado como representação fiel do cenário de trânsito)
- Similaridade
 - É o percentual de interseção das divisões (bairros)
 recomendadas pelo T-MAPS e Google Directions



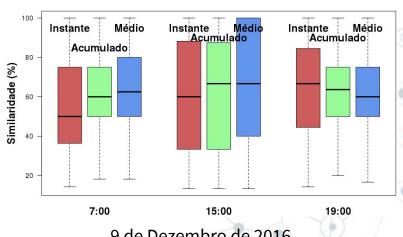
Modelagem e avaliação do Twitter Maps **Avaliação**



A mediana varia entre 50% a 60%

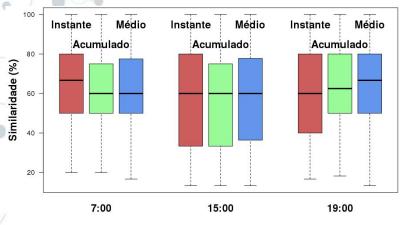


8 de Dezembro de 2016



9 de Dezembro de 2016

Modelagem e avaliação do Twitter Maps **Avaliação**



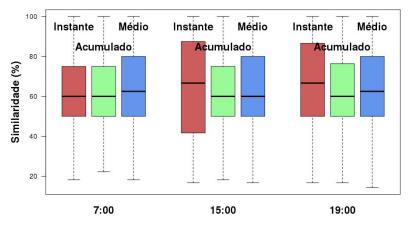
7 de Dezembro de 2016

Rotas usando a métrica <u>ACUMULADO</u> apresentam maior variação de similaridade.

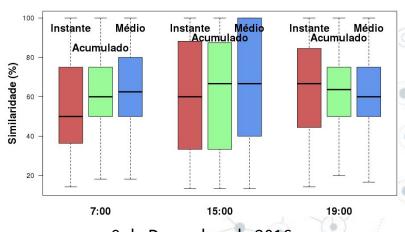
• A mediana varia entre 60% a 66%

Rotas usando a métrica <u>MÉDIA</u> apresentam maior variação de similaridade.

• A mediana varia entre 63% a 67%

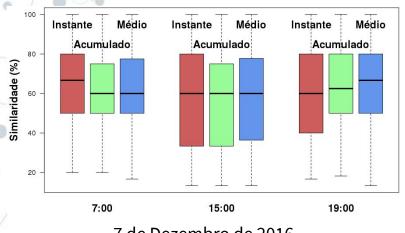


8 de Dezembro de 2016



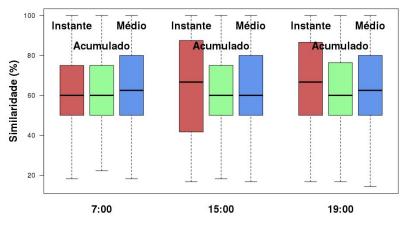
9 de Dezembro de 2016

Modelagem e avaliação do Twitter Maps **Avaliação**

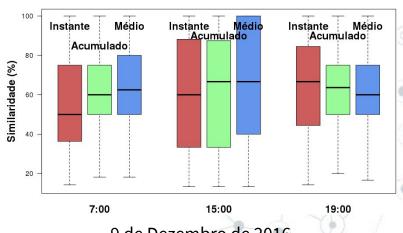


7 de Dezembro de 2016

- Em média, metade das rotas, apresentam 62% de similaridade
- 25% das rotas apresentam similaridade entre 87% e 100%



8 de Dezembro de 2016



9 de Dezembro de 2016

- Coleta dos tweets
- RM pontuação
- RM palavras de parada (stop words)
- Stemming

x '/,.;*"?!/...

* the, is, at, which...

Jamming, jammed → **Jam**Ave, Av→ **Avenue**St → **Street**

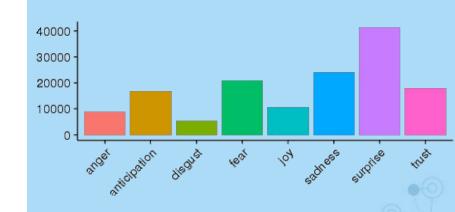
Bibliotecas do R: [syuzhet, tm, stringr, wordcloud]

- Coleta dos tweets
- RM pontuação
- RM palavras de parada (stop words)
- Stemming

Nuvem de palavras

- Coleta dos tweets
- RM pontuação
- RM palavras de parada (stop words)
- Stemming
- 0
- Score

Nuvem de palavras



- Coleta dos tweets
- RM pontuação
- RM palavras de parada (stop words)
- **Stemming**
- - Score

Nuvem de palavras

- 0
- Pos ou Neg?

Ang. Anticip. Disg. Fear Joy Sad. Surpri. Trust Neg. Pos.

##1 0 1 0 0 1 0 0 1 0 1

##2 0 0 0 0 0 0 0 0 0 0 0

##3 0 0 0 0 0 0 0 0 0 0 0

##4 0 1 1 0 1 1 0 2 1 2

##5 0 1 0 0 1 0 1 2 0 2

##6 0 0 0 0 0 0 0 0 0 0

- Coleta dos tweets
- RM pontuação
- RM palavras de parada (stop words)
- Stemming
- 0 0
 - Score
- Nuvem de palavras

- O
- Pos ou Neg?
- 0
- Rotas e mapas

Conclusões

- Apresentamos um estudo de caracterização e relacionamento entre dados do Twitter e o cenário de trânsito
- Apresentamos o T-MAPS
 - Rotas sugeridas foram, em média, 62% similares com as rotas do G. Directions
 - 25% das rotas avaliadas foram obtidos graus de similaridade entre 87% e 100%

Conclusões

- Questões em aberto
 - 1. Como medir a confiabilidade das fontes e validade dos dados?
 - 2. Como explorar os textos dos *tweets*, para extrair mais informações sobre os eventos?
 - Ferramentas de NLP específicas para tweets
 - 3. Como estender o T-MAPS para regiões com maiores dimensões?
 - Problema computacional

Obrigado!

Perguntas?

bruno.ps@dcc.ufmg.br