

Accepted Manuscript

Mobile Matrix: Routing under Mobility in IoT, IoMT, and Social IoT

Bruno P. Santos, Olga Goussevskaia, Luiz F.M. Vieira,
Marcos A.M. Vieira, Antonio A.F. Loureiro

PII: S1570-8705(18)30241-5
DOI: 10.1016/j.adhoc.2018.05.012
Reference: ADHOC 1680

To appear in: Ad Hoc Networks

Received date: 22 February 2018
Accepted date: 21 May 2018

Please cite this article as: Bruno P. Santos, Olga Goussevskaia, Luiz F.M. Vieira, Marcos A.M. Vieira,
Antonio A.F. Loureiro, Mobile Matrix: Routing under Mobility in IoT, IoMT, and Social IoT, Ad Hoc
Networks (2018), doi: 10.1016/j.adhoc.2018.05.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.adhoc.2018.05.012
https://doi.org/10.1016/j.adhoc.2018.05.012

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Mobile Matrix: Routing under Mobility in IoT, IoMT, and Social IoT

Bruno P. Santosa, Olga Goussevskaiaa, Luiz F. M. Vieiraa, Marcos A. M. Vieiraa, Antonio A.F. Loureiroa

aComputer Science Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

Abstract

The explosive growth of “things” connected to the Internet (Internet of Things, IoT) raises the question of whether
existing ready-to-go networking protocols are enough to cover social and mobile IoT’s demands. IoT aims to intercon-
nect static devices attached to some physical infrastructure. However, mobility is a major factor present in everyday
life, and naturally the “things” can move around (Internet of Mobile Things, IoMT) and create social ties (Social
IoT, SIoT) in the cyber-physical space. In that context, we present Mobile Matrix (µMatrix), a routing protocol that
uses hierarchical IPv6 address allocation to perform any-to-any routing and mobility management without changing
a node’s address. In this way, device mobility is transparent to the application level favoring IoMT and SIoT imple-
mentation and broader adoption. The protocol has low memory footprint, adjustable control message overhead, and it
achieves optimal routing path distortion. Moreover, it does not rely on any particular hardware for mobility detection
(a key open issue), such as an accelerometer. Instead, it uses a passive mechanism to detect that a device has moved.
We present analytic proofs for the computational complexity and efficiency of µMatrix, as well as an evaluation of
the protocol through simulations. We evaluate the protocol performance under human and non-human mobility mod-
els. For human mobility, we generated mobility traces using Group Regularity Mobility (GRM) Model, setting its
parameters based on real human mobility traces. For the non-human mobility, we propose a new mobility model, to
which we refer as Cyclical Random Waypoint (CRWP), where nodes move using a simple Random Waypoint and,
eventually, return to their initial position. We compared µMatrix with three baseline protocols: Routing Protocol
for low-power and lossy networks (RPL), Mobility Management RPL (MMRPL), and Ad hoc On-Demand Distance
Vector (AODV). The results show that µMatrix and RPL offer ≈ 99.9% of bottom-up delivery rate, but only µMatrix
offer ≥ 95% of top-down traffic in highly dynamic and mobile scenarios, while other protocols ≤ 75%. Moreover,
µMatrix uses up to 65% of the routing table while RPL and AODV fulfill theirs in all scenarios, which leads to poor
top-down and any-to-any reliability.

Keywords: Internet of Things, Mobility, Hierarchical Address, Routing protocol

1. Introduction

Internet of Things (IoT) has become a reality with the explosive adoption of smart environments, where everyday
objects (“things”) are capable of communicating through the Internet. Usually, IoT is a set of interconnected static
“things” forming a cyber-physical environment. For example, a smart grid composed by smart meters and smart
sensors into a smart building. However, mobility is a major factor present in human and non-human life. It makes life
easier and turns smart application more flexible and suitable in the mobile world. Nowadays, we already have mobile
phones and vehicles in the IoT, in the near future we will have further mobile devices. Naturally, IoT will need to
evolve encompassing mobile things (IoMT) and, furthermore, such devices will be able to develop social ties (Social
IoT) in the cyber-physical space. With this evolution, IoT takes a step towards ubiquitous computing, where virtually
everything is connected with everything at anytime and anywhere.

In the literature, one can find several applications and service proposals for IoMT and SIoT [1, 2, 3, 4]. However,
they assume that the networking stack is capable of meeting their requirements of mobility management, memory,

Email addresses: bruno.ps@dcc.ufmg.br (Bruno P. Santos), olga@dcc.ufmg.br (Olga Goussevskaia), lfvieira@dcc.ufmg.br (Luiz
F. M. Vieira), mmvieira@dcc.ufmg.br (Marcos A. M. Vieira), loureiro@dcc.ufmg.br (Antonio A.F. Loureiro)

Preprint submitted to Ad Hoc Networks May 21, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

energy, and processing efficiency. Actually, we find that we are far from covering all issues imposed by mobility,
especially, regarding very tiny devices with resource constraints.

IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN) defines standards for low-power devices
that comprise the IoT. Standard routing protocols have been defined, such as CTP [5] and RPL [6], and are widely
used to build IoT applications and services. Nonetheless, they do not always meet the requirements of IoT, IoMT,
and SIoT apps and services, such as the mobility management, any-to-any communication, memory efficiency, and
others [7].

To address these challenges, we present Mobile Matrix (µMatrix), a complementary solution to standard routing
protocols for IoT, which provides better support for IoMT and SIoT. µMatrix is a routing protocol that uses hierarchical
IPv6 address allocation to manage mobility without changing a node’s IPv6 address, while being memory efficient,
favoring resource-constrained devices. µMatrix manages mobility transparently to the upper networking layers in the
stack, therefore favoring IoMT and SIoT implementation and adoption. One of the building blocks of µMatrix is a
passive mechanism, named Reverse Trickle Timer (RevTT), to detect mobility in a device’s neighborhood. Therefore,
the protocol does not need extra hardware to operate. Given that there is an intrinsic trade-off between the delay to
detect mobility and the number of control messages, one can tune µMatrix’s frequency of control messages according
to the application or the mobility pattern.

µMatrix is built upon a previously proposed protocol, named Matrix [8]. Besides integrating mobility management
into Matrix, µMatrix presents the following features:

• Transparent mobility management: devices can move in the cyber-physical space without ever changing their
IPv6 address;

• Optimal routing path distortion: messages addressed to a mobile device, from anywhere in the network, are
sent along the shortest path from the source to its current location, using its original IPv6 address;

• Any-to-Any routing: devices running µMatrix are able to not just perform bottom-up data collection or top-down
dissemination, but also to send messages to any other device in the 6LoWPAN;

• Passive mobility detection: µMatrix uses RevTT to detect neighbor device mobility, which can be tuned accord-
ing to the application or the mobility pattern;

• Low memory footprint: µMatrix is in consonance with IPv6 addressing and uses a hierarchical address allocation
to reduce memory usage to store routing information in a dynamic mobile environment;

• No fixed devices required: µMatrix does not rely on fixed devices to manage mobility, except for the border
router, commonly employed in 6LoWPAN;

• Link dynamics and fault-tolerance support: µMatrix inherits from Matrix the capacity to overcome temporary
device failure or link dynamics by rerouting the data flows using a local broadcasting mechanism [8];

• Platform-independent: µMatrix does not rely on any specific platform or extra hardware (e.g., GPS, accelerom-
eter) to operate;

Moreover, we propose a new mobility model, to which we refer as Cyclical Random Waypoint mobility model
(CRWP). In CRWP, nodes are assigned a home location and might make several moves in random directions, con-
necting to the 6LoWPAN at different attachment points (and forming social ties), and eventually return to their home
locations. Our motivation for proposing a new mobility model comes from application scenarios, where commu-
nication is carried out in environments with limited mobility, such as 6LoWPANs deployed in an office or school
buildings, university campuses or concert halls or sports stadiums.

The main contributions of this paper can be summarized as follows:

1. We present µMatrix, a communication protocol that performs hierarchical IPv6 address allocation and manages
routing and mobility without ever changing a node’s IPv6 address. The protocol favors the implementation
and adoption of IoT, IoMT, and SIoT with constrained devices. µMatrix has low memory footprint, adjustable
control message overhead and achieves optimal routing path distortion;

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Feature µMatrix RPL Co-RPL MMRPL MV-RPL ME-RPL mRPL DMR XCTP Hydro
Bottom-up X X X X X X X X X X
Top-Down X X X X X X X X X
Any-to-any X X X X X X X X
IPv6 support X X X X X X X X
Address Allocation X
Memory efficiency X
Fault Tolerance X X
Local Repair X
Mobility Detection RevTT T P RTL P T T T T P

Constraints
Nodes have

a home location
Static nodes Static nodes Static nodes Static nodes Static nodes

Table 1: Routing protocol properties (RevTT – Reverse Trickle Timer; RTL – Trever Trickle Timer Like; T – Trickle; P – Periodic)

2. We provide analytic proofs for the computational complexity and efficiency of µMatrix, as well as an evaluation
of the protocol through simulations. We evaluate µMatrix under human and non-human mobility patterns,
therefore showing its functionality;

3. An essential building block of µMatrix is the Reverse Trickle Timer, a passive mobility detection mechanism
that captures changes in topology without requiring additional hardware (e.g., accelerometer, GPS or compass).

4. We propose the Cyclical Random Waypoint mobility model (CRWP), a new mobility model for scenarios where
devices have a home location and perform periodic random movement patterns.

5. The source code of µMatrix was made publicly available, so all experimental results presented in this work can
be reproduced1.

The rest of this paper is organized as follows. We discuss some related work in Section 2. The design overview
of Matrix Mobile is presented in Section 3. We analyze the message complexity of the protocol in Section 4. We
describe the mobility modeling in Section 5. In Section 6, we present our simulation results. Finally, in Section 7, we
present the concluding remarks.

2. Background and Related Work

Wireless Sensor Networks (WSN) are a type of network, where usually tiny static devices are employed to sense,
process, store and communicate information surrounding the device. With the integration of Internet Protocol (IP) to
WSN emerges the IoT. The concept appeared early 1982, but its real implementation and adoption started in the last
years [9]. More recently, two new paradigms have arisen from IoT: the Social Internet of Things (SIoT) [2] and the
Internet of Mobile Things [4]. Those new paradigms hold a common characteristic: their devices are no longer static,
but are able to move by itself or are attached to mobile entities.

Several mobility-enabling routing protocols have been proposed for IoT. Table 1 summarizes properties of these
routing protocols. We use a check mark if the protocol has the feature or empty otherwise. Ten features have been
considered, which are related to traffic patterns, addressing, memory, reliability, and protocol limitations.

RPL [6] is a well-known standard routing protocol for 6LoWPANs. Nevertheless, it presents some limitations,
in particular in mobility scenarios, such as scalability issues, reliability and robustness for top-down traffic [7, 8].
Most recent mobile-enabled routing protocols are RPL extensions [10]. They focus on mobility issues but not always
handle the drawbacks of RPL.

Co-RPL [11] provides mobility support for RPL but does not take advantage of dynamic features of the Trickle
Timer algorithm, which is intrinsic to RPL. This turn Co-RPL more responsive by using the corona mechanism, but
it has a higher overhead. Co-RPL builds on top of RPL’s strategies to build and repair downwards routes, which is
inefficient regarding memory.

1https://bps90.github.io/mmatrix-code/

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

MMRPL [12] modifies the RPL beacon periodicity by replacing Trickle with a reverse Trickle-Like mechanism.
Thus, their reverse Trickle decays exponentially as longer as a node stay attached to the same parent. MMRPL assumes
that as longer as a node remains attached to a parent, the higher will be the probability of the node to move. Also,
MMRPL assumes that some nodes are static, which helps its mobility management, therefore requiring heterogeneous
devices and more complex code to operate.

MRPL-V [13] modifies RPL to work in vehicular networks. The protocol replaces the Trickle mechanism by
a periodic fixed timer to fire RPL control messages. However, since RPL is not built to support highly dynamic
scenarios, like vehicular ones, using periodic beaconing to advertise topology changes might be too fast, while the
global routing repair is too slow to keep with the changes. Thus, downwards routing can present poor reliability.

ME-RPL [14] also assumes that some nodes are static and others can move. In the RPL route discovery phase,
when a node is choosing its preferred parent, static nodes have higher priority than mobile ones. When a node is
detached from a parent, it sends RPL DIS messages in dynamic intervals. Such alterations turn ME-RPL responsive
to mobile nodes rejoining the RPL tree and identify mobile nodes. However, the memory requirement to maintain
downward routes is still prohibitive.

mRPL [15] is based on the so-called smart-HOP algorithm, a hand-off mechanism for mobile nodes in RPL. They
separate nodes into mobile nodes (MN) or serving access points (AP). AP are static and MN nodes use AP nodes as
parents in the RPL routing tree.

DMR [16] enhances RPL to support data transfer in mobile nodes. DMR removes some features from RPL like
top-down and any-to-any traffic handling. DMR also stores routing information to choose the best parent to deliver
data reliably.

XCTP [17] extends CTP [5] to support bidirectional traffic and manage mobility. However, XCTP uses a flat
address structure instead of IPv6 addressing. Also, XCTP does not fully support any-to-any routing. Hydro [18] fills
the gap of any-to-any communication traffic, but it requires static nodes with a large memory to maps nodes’ current
locations. In fact, XCTP and Hydro were created for static scenarios, but can operate under mobility.

Mobile IPv6 (MIPv6) [19] supports mobility among different domains by assigning multiple IP addresses to each
mobile node: a fixed home address and a Care-of Address (CoA), which changes depending on the current subnet
where the node is. A home agent (HA), a fixed entity, is required to manage the mobility and map the addresses. All
data traffic is firstly routed to the HA, and then to the CoA, thus MIPv6 does not use the shortest path to routing data
flow, presenting a sub-optimal routing path distortion. Hierarchical Mobile IPv6 (HMIPv6) [20] enhances MIPv6 by
reducing the signaling load among mobile devices. However, these protocols were not designed for 6LoWPANs, and
they do not present a mobility detection mechanism, nor adjustable timers to handle network dynamics.

Protocols for mobile ad hoc networks, like AODV [21] and OLSR [22], have high memory footprint and control
message overhead, which makes them not suitable for low-power devices or 6LoWPAN. Actually, there are efforts to
extend those for 6LoWPAN such as LOAD [23] and DYMO-Low [24]. These protocols were inspired by AODV and
DYMO, but they still present drawbacks in mobile scenarios in terms of memory.

Differently from most of the RPL-based protocols, in this work, we present a mobility-enabling routing protocol
that solves many of RPL’s drawbacks. µMatrix presents low memory footprint for top-down and any-to-any routes
under mobility, transparent mobility management, optimal routing path distortion, and fault-tolerance support. Thus,
µMatrix is designed to support IoMT and SIoT implementation and broader adoption.

This article is an extension of a preliminary conference version [25]. The journal version includes new experiments
with different mobility models (as opposed to the single CRWP model used in [25]), simulating real-world mobility
traces with variable characteristics, such as inter-contact time and number of encounters, which serve as a validation of
µMatrix in mobile scenarios, envisioned for IoMT and SIoT. Moreover, additional baseline protocols were simulated
(MMRPL and AODV) and optimizations were performed in the protocol implementation, increasing the data delivery
success rate from approx. 70% to 95%+ in the worst-case simulated mobility scenarios.

3. Design Overview

As mobility is a new factor to IoT, a question arises: where can we handle mobility in IoT? It is possible to
handle mobility with different purposes in different layers of the IoT network protocol stack. However, we argue that
mobility in the network layer plays a crucial role in the entire IoT operation in mobile scenarios. Firstly, this is due

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 1: µMatrix integrated into the network stack.

to the need to maintain routes under device mobility. Secondly, if the device address changes, all protocol layers
above the network layer need to be aware of it, increasing the overall protocol complexity. Finally, if devices have
constrained resources, then managing routes for mobile devices can be expensive in terms of memory and energy.

There are three data traffic patterns that a routing protocol should provide for IoT, IoMT and SIoT applications [7]:

1. Bottom-up,

2. Top-down,

3. Any-to-any.

The first type of traffic pattern provision is the primary function of standards protocols, such as CTP [5] and RPL [6],
and efficient implementations are widely available. However, top-down and any-to-any traffic implementation is
not always supported or is not optimized for performance by standard protocols. Therefore, µMatrix is designed to
function on top of an existing bottom-up, or collection, scheme (we use CTP in our implementation), and adds an
efficient solution for the remaining two data traffic patterns, besides providing support for mobility.

3.1. Mobile Matrix Architecture

Figure 1 shows how µMatrix is integrated into the overall network protocol stack. µMatrix is implemented in
the network layer and is comprised of two planes and sub-modules to handle routing states and manage mobility, as
illustrated in Figure 2:

• Control plane: hierarchical IPv6 address allocation, routing table maintenance, and mobility management;

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 2: µMatrix protocol’s architecture.

• Data plane: routing information querying and data and control forward data and control packet forwarding.

µMatrix operates according to the following phases, described in detail in Sections 3.2 through 3.4:

1. Collection tree initialization: an underlying bottom-up routing protocol (e.g., CTP or RPL) creates a collection
routing tree, which is dynamically updated to reflect current connectivity conditions;

2. Hierarchical IPv6 address allocation: once the collection tree was built, µMatrix performs a convergecast to
gather information about the network’s initial topology, which is used to partition the available IPv6 address
space in a hierarchical way among all nodes.

3. Packet forwarding: bottom-up data traffic is forwarded along the collection tree built and maintained in phase
(1); top-down data is forwarded using IPv6 addresses allocated in phase (2); any-to-any packet forwarding is
performed by combining the routing structures maintained in phases (1) and (2).

4. Mobility management: µMatrix uses additional routing data structures to reflect the topology changes due to
device mobility.

3.2. Control Plane: Routing Engine

The control plane manages all routing table structures and makes decisions based on information from other
modules, such as mobile or forwarding engines and the underlying collection protocol (Figure 2). In this section,
we describe the basic routing functionalities of the control plane of µMatrix, in the following order: routing en-
gine data structure (Section 3.2.1), control packets and parameters (Section 3.2.2), IPv6 multihop host configuration
(Section 3.2.3). Then, in Section 3.3, we present the mobile engine of µMatrix.

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(a) Ctree structure, ID inside the
nodes.

(b) IP addres assignment by MHCL hierar-
chical distribution. Simplified 8-bit IP in-
side the nodes.

(c) Node 2 moves, then Ctree changes. (d) RCtree ∪ IPtree. Red and thicker links
are in RCtree, but not in IPtree.

Figure 3: Routing structures: Ctree, IPtree, and RCtree.

3.2.1. Routing Engine: data structures
µMatrix and the underlying collection protocol build and maintain three routing trees structures:

1. Ctree: a collection tree built by the underlying collection protocol (e.g., CTP [5] or RPL [6]). CTP was used
as a data collection routing protocol providing efficiently bottom-up routes. We chose CTP purposely due to its
lower code complexity than RPL’s [8], robustness, loop avoidance, and its wide acceptance by the community.

2. IPtree: an IPv6 hierarchical tree is created using MHCL algorithm [8] at µMatrix initialization phase. The
IPtree is kept static, except when new devices join the network2;

3. RCtree: a tree that reflects the topology changes caused by devices mobility.

Figure 3 shows those routing structures graphically. Initially, in Figure 3(a), the underlying collection protocol
builds the Ctree structure, note that we have a border router (node 1) that starts the process. Then, µMatrix starts
the MHCL algorithm to distribute the available range of IPv6 hierarchically3. At this moment, IPtree = CtreeR

and RCtree = ∅ (see Figure 3(b)). Whenever a topology change occurs due to mobility in Ctree, a new reverse
link is added into RCtree, and it is maintained while the change remains, therefore RCtree = CtreeR \ IPtree (see
Figures 3(c)(d)). RCtree is not essentially a tree since it contains only reversed links in Ctree but not in IPtree.
Nevertheless, RCtree ∪ IPtree is, in fact, a tree, which µMatrix uses to downward routing. Each node η keeps the
following information to build and maintain those trees:

2As described in detail in [8], each node is assigned a reserve address space for nodes joining the network after the initialization phase.
3The network operator defines this range of IPs, which will be distributed along the IPtree [8].

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TFigure 4: Simplified hierarchical address assignment with 8-bit available address space and 6.25 % of addresses reserved for delayed nodes. Inside
the nodes, its label and IP assigned, the % next to the nodes express the approximate sub-tree size. Thick downwards arrows indicate the available
IP range fairly distributed.

• CT parent(η): the ID of the current parent of a node η in the Ctree;

• PRV parent(η): the ID of η’s previous CT parent(η);

• IPparent(η): the ID of the node that assigned to η its IPv6 and IP range;

• IPchildren(η): the standard (top-down) routing table with IPv6 ranges for one-hop descendants of η in the
IPtree;

• Mtable(η): a temporary alternative routing table for mobility management. Each Mtable entry has the following
fields: IPv6 range, next hop, and Time Has Lived (THL).

3.2.2. Control Packets and Parameters
µMatrix introduces one new control packet and one parameter to exchange topology information and update the

Mtables upon mobility events:

1. nodeInfo frame has 7 fields: seqNum, IP Node, IP range, IPparent, CTparent, TTL, and Type. The fields
are self-explanatory, except by the type field, which specifies if the frame is a keepRoute to an entry into the
Mtable, or rmRoute to remove an entry. Following, we will use keepRoute or rmRoute for short;

• A node sends keepRoute beacons to inform its current location and the in-network nodes can update its
Mtables to reflect the present network topology;

• rmRoutes is an optional beacon. It is sent when nodes move from a location to another in order to quickly
remove inconsistent states in-network nodes.

2. δ parameter specifies the time between sending two consecutive nodeInfo packets. Note others time-based
strategies can be used than the periodic one.

A device fills its Mtable by receiving keepRoute beacons from mobile nodes. The node keeps Mtable entries
as long as it receives keepRoute (see Section 4.1 for Mtable memory footprint analysis). Otherwise, it uses a
T HL-based mechanism or rmRoutes to remove entries. In static scenarios any node stores one-hop neighborhood
information in IPparent(η) table, this requires O(k) entries, where k is the number of direct children of a node in the
Ctree. This memory footprint is better than state-of-the-art, e.g., RPL would need at least 1 routing entry for every
child in a node sub-tree to perform top-down routing.

3.2.3. IPv6 Multihop Host Configuration
µMatrix relies on an underlying collection routing protocol to build the Ctree. Once the Ctree is stable4, the

address space available to the border router, e.g., the 64 least-significant bits of the IPv6 address (or its compressed

4A node is stable in the Ctree if it reaches k times the maximum maintenance beacon period of Ctree protocol without changing its parent. We
use Trickle Timer [26] as beacon scheme.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

16-bit representation), is hierarchically partitioned among nodes in the Ctree by using the MHCL algorithm [8]. The
(top-down) address distribution is preceded by a (bottom-up) convergecast phase, in which each node counts the total
number of its descendants and propagates it to its parent. Thus, a node knows how many descendants each child has.
Such information is required to distribute IP ranges in a fairly way. As result of this procedure is obtained the IPtree.

Figure 4 shows the IP host configuration process. First, the underlying routing protocol creates the Ctree (upwards
grey arrows), and then, after the Ctree stabilization, the convergecast phase occurs allowing nodes to know the size
of theirs sub-tree (% next to each node). Next, the border router starts the IP distribution by auto-setting its IP (e.g.,
the first available IP from range) and then reserving a portion of the range for delayed nodes. After that, the node
distributes the remaining range fairly among its children (e.g., in Figure 4 B receives 70% of available range, i.e.,
from 16 to 183). Finally, each node repeats the IP distribution process.

3.3. Control Plane: Mobile Engine

The mobile engine plays a central role in the µMatrix operation. It is responsible for identifying when mobility
events happen and feed the routing engine with current node status. With this, it helps the routing engine to take action
upon mobility events properly.

Following, in Section 3.3.1, we present details of RevTT a passive mobility detection algorithm. Next, in Sec-
tion 3.3.2, we present the µMatrix finite state machine used to keep track the node’s status. Finally, in Section 3.3.3,
we present the µMatrix strategies to prevent and recover from the loop.

3.3.1. Mobility Detection
Mobility detection is a crucial issue to handle mobile devices in routing protocols. Most of the related protocols

(see Section 2) modifies this component to improve the routing protocol performance under device mobility. There are
two classes of mobility detection events: i) active mobility event; ii) passive motion event. In the first one, the devices
by using extra hardware (e.g., accelerometer or GPS) inform their motion to the routing protocol to take actions. In
the second one, the protocol, by itself, infers the movement of the devices(e.g., by using beaconing mechanisms).

Standards 6LoWPAN routing protocols, such as CTP or RPL, make use of Trickle Timer algorithm [26] that
passively detects topology changes. However, Trickle Timer lacks in agility to detect changes in dynamic network
and mobile nodes. We propose Reverse Trickle Timer (RevTT) that operates similarly to the standard algorithm, but
in reverse order.

RevTT introduces three parameters which the network operator must tune it according to the application and
the mobility pattern requirements. Also, RevTT has three methods to manipulate its behavior. The parameters and
methods are described below:

1. Parameters: Imax and Imin the maximum and minimum time interval to fire an event. Ik the number of attempts
before declaring an inconsistency.

2. Methods: Start aiming to start the RevTT operation, Stop aiming to break the timers, and Reset that basically
stops the current times using Stops method and then the Start method.

RevTT operation is straightforward. The algorithm starts with Imax interval to fire an event. If Stop/Reset methods
are not used, then RevTT goes to the Imin interval for Ik attempts. If nothing happens during Ik fires, then RevTT
triggers an event indicating inconsistency.

Figure 5 shows the RevTT procedure within µMatrix Mobile Engine. First, a node starts sending unicast hasMoved
beacons to its parent in Imax intervals. If the node did not receive an ack for a hasMoved beacon, then RevTT sets the
interval to Imin. After Ik unsuccessful attempts, the node knows that a movement or fault happens. Thus, the node can
take actions, for example, properly perform a handover to another parent and then the procedure restarts. Note that
by setting the RevTT parameters, the network operator should consider the trade-off between delay to detect mobility
and number of beacons. For a smaller delay in mobility detection, Imax must be tuned to small values at the cost of
more hasMoved beacons. In our experiments (see Section 6), RevTT parameters were set according to application
data rate.

In [10], the authors argue that a common modification to support mobility is to change the control message
periodicity. The typical approach uses a simple periodic timer or the standardized Trickle Timer. While RevTT waits

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 5: Reserve Trickle Timer operation with µMatrix.

for Imax + Tk × Imin to detect a topology change, where Imin � Imax, the periodic and standardized Trickle approaches
wait for at least 2 × Imax.

3.3.2. Mobile Engine: Finite State Machine
µMatrix starts the mobile engine as soon as the host configuration finishes. The mobile engine allows the nodes

to move around the 6LoWPAN. This module uses a finite state machine, as shown in Figure 6. Each node can be in
one state depending on its previous condition and the knowledge about its neighborhood. The engine uses RevTT to
recognize mobility and transit among states. Following, we discuss the actions taken in each one of those states.

Each node starts at Home Location (HL) state. In HL, the nodes start RevTT sending a hasMoved beacon to its
CT parent(η). When RevTT identifies an inconsistency and triggers a mobility event, the node transits to Movement
Detected (MD) state.

When a node reaches the MD state, it knows that a mobility event happen, but it does not know if itself or its
parent moved. There are at last two ways to automatically find out who moved. First, a node can pro-actively queries
its children (IPChildren(η)), if no one answer then the node moved; otherwise the parent moved. Second, a node must
wait for a period (e.g., one RevTT Imax interval) to receives hasMoved beacons from its children and then infer who
moved. We use the second approach in our implementation. After discovering who moved, the node goes to Node
Moved (NM) or Parent Moved (PM) state.

Several actions are taken when a node reaches NM state. Firstly, the node disables the IPChildren(η) table usage
due to the node new position in the Ctree. Next, the Mtable is cleaned, because it must be outdated. Then, the node
triggers the new parent discovery from underlying collection protocol. When the node is attached again to the Ctree,
it restarts RevTT with new CTparent and begins sending keepRoute.IP ONLY at a frequency of δ to its IPparent.
At NM state, the nodes do not fill the nodeInfo.IP RANGE field because the node is no longer at home location in
the IPtree, being incapable of using its IPChildren(η) table. Figures 7(a)(b) illustrate this situation. The Figure 7(a)
shows the node B before its movement, then when B is attached to a new CTparent (Figure 7b), it sends keepRoute
beacons to A. The beacons are forwarded upward to the lowest common ancestor LCA(A, B) and then downwards to
the node A.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 6: Mobile Engine state machine.

Figure 7: Mobile engine operation after mobility events.

When a node reaches PM, this means that its parent moved. Then, the node triggers the parent discovery mecha-
nism from the underlying collection protocol. When it is attached again to Ctree, it restarts RevTT and starts sending
keepRoute beacons (if it has children in the IPtree, it fills the IP RANGE) at a frequency of δ. The first beacon is
addressed to its grand IPparent. The Figure 7(c)(d) illustrate this situation. The Figure 7(c) shows C, a non-leaf
node, before B movement. Then, in Figure 7(d), B moves and then C eventually reaches PM state, next C starts
sending keepRoute beacons to its grandIPparent = A. The messages travel to LCA(A, C) and then to the ultimate
destinations. The node B moves to NM state and takes the actions accordingly.

Eventually, nodes return to their home position being attached again to its IPparent in the Ctree. This situation
also triggers some actions. First, the node stops to sending keepRoute beacons. Also, the returned node restarts the

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: µMatrix’s preserves locality when it updates the routing table under mobility events. Mtables above LCA do not need updates.

RevTT with its IPparent.
Besides the action in each state, optional actions can be made. If a node is attached to a sequence of CTparent

before returning to home location, several states will be installed in-network Mtables. Although the Mtable’ THL field
exists to remove inconsistent entries, it is possible to send rmRoute beacons to each node’s PRVparent to eliminate
route inconsistency quickly.

Discussion: note that a sub-tree can move and nodes still hear each other. For instance, in Figure 7(c) suppose A
and B move together. Then, A and C eventually will transit to PM, while B and C’s sub-tree remain in HL. In this
case, the LCA has two Mtable entries matching with C’s sub-tree, but one more restrictive than other. Thus, the LCAs
play a key role, which they always route through the most restrictive Mtable range match available.

Also, note that µMatrix preserves locality when manages mobile nodes since no Mtables need updates above
LCA. Figure 8 illustrates this situation. In Figure 8(a), shows µMatrix’s routing structures in a static situation. Then,
the node B moves, Figure 8(b), it eventually reaches the NM state, therefore the Mtables comprised in the shortest
path from B to A = IPparent(B) = LCA(B, IPparent(B)) will receive B’s keepRoute updates. Also, B movement
causes E and F to transit from HL to PM state. Then, when E and F eventually find new routes, they will update the
Mtables comprised between them and its grandIPparent = A.

Note that Mtable(C) and Mtable(A) require only one entry for both E and F sub-trees. We explore the fact of the
contiguous IP ranges can be aggregated into unique entries in the Mtables improving the memory usage efficiency.

3.3.3. Loop avoidance
Dynamic links and mobile nodes cause turn route information outdated, which may leverage routing loops [5].

µMatrix uses data path validation and adaptive beaconing to detect loops such as CTP and RPL [5, 13]. Besides
that, if a node receives more than one unique control packet5, then this indicates an inconsistency in the tree trig-
gering the control packet suppression and the underlying collection protocol route update. Besides that, Mtable and
keepRoute beacon have, respectively, Time Has Lived (THL) and Time To Live (TTL) fields, which are used to
remove inconsistent routes and packets from the network.

5The keepRoute fields together (see Section 3.2.1) denote a unique packet instance.

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.4. Mobile Matrix Data Plane: any-to-any routing

The Forwarding Engine (see Figure 2) is responsible for data traffic forwarding. Any-to-any routing combines
both routing schemes: bottom-up and top-down. The engine uses bottom-up routes to forward packets until the LCA
between the sender and receiver, and then it uses top-down routes to forward data to the destination. Upon receiving
a data packet, the node checks if the message is for itself. Second, the node tries to match the destination with
the most restrictive entry in the Mtable. Third, if any Mtable entry matches with the target address, then the node
checks if the packet destination falls within some range in IPchildren(η), if a match occurs, then the node forwards
the packet downwards according. Finally, if all previous attempts fail, then the node sends the packet upwards using
CT parent(η).

4. Complexity Analysis

For the formal analysis, we assume a synchronous communication message-passing model with no faults. Thus,
all nodes start executing the algorithm simultaneously and the time is divided into synchronous rounds, i.e., when a
message is sent from node v to its neighbor u in time-slot t, it must arrive at u before time-slot t + 1, and d(v, u) is the
shortest path length between v and u in Ctree ∪ IPtree ∪ RCtree. The performance of µMatrix in faulty scenarios is
analyzed through simulations in Section 6.

4.1. Memory footprint

As described in Section 3, the temporary routing information needed to maintain mobility is stored in the Mtable
data structure of some nodes. Each entry is kept for at most T HLmax seconds, a time interval pre-configured by the
network operator, and is deleted unless a keepRoute beacon is received. In the following theorem, we bound the total
number of Mtable entries in the network, necessary to manage the routing of each mobile node µ ∈ CTree.

Theorem 1. The memory footprint to manage the mobility of one node µ ∈ Ctree with µMatrix isM(µ) = O(depth(Ctree)).

Proof. Consider a node µ ∈ Ctree that has moved from its home location in time-slot t0 and returned in time-slot t f .
Consider the permanent IPparent(µ) and the temporary CT parenti(µ) in time-slot t0 < ti < t f . A routing entry for the
temporary location of µ will be stored in the Mtable of every node comprising the shortest path between IPparent(µ)
and CT parenti(µ). Moreover, if µ has descendants in the IPtree, in other words, k(µ) = |IPchildren(µ)| > 0, then each
node c ∈ IPchildren(µ) will send keepRoute beacons to their respective CT parenti(c), and a (temporary) routing
entry will be stored in the Mtable of every node comprising the shortest path between CT parenti(c) and IPparent(µ).
Therefore, the total memory footprint to manage the mobility of a node µ is:

M(µ) = d(CT parenti(µ), IPparent(µ)) + 1

+
∑

c∈IPchildren(µ)

(d(CT parenti(c), IPparent(µ)) + 1)

≤ (k(µ) + 1) × (depth(Ctree) + 1)

= O(depth(Ctree))

Theorem 1 implies that the total memory footprint to manage the mobility of m nodes is O(m × depth(Ctree)).
Note that µMatrix preserves locality when managing mobile routing information of a node µ, since no Mtable needs
to be updated at nodes above the LCA(IPparent(µ),CT parent(µ)).

4.2. Control message overhead

Control messages used by µMatrix are comprised of three types: i) those used by Matrix to set up the initial
IPtree and address allocation; ii) keepRoute beacons, defined in Section 3.2.1; and iii) hasMoved beacons, defined
in Section 3.3.1.

For any network of size n with a spanning collection tree Ctree rooted at node r, the message and time complexity
of Matrix protocol in the address allocation phase is Msg(MatrixIP (Ctree)) = O(n) and T (MatrixIP (Ctree)) =

O(depth(Ctree)), respectively, which is asymptotically optimal, as proved in [8]. Next, we bound the number of
control messages of type (ii) and (iii).

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Theorem 2. Consider a network with n nodes, with a spanning collection tree Ctree rooted at node r, and m mobility
events, consisting of m nodes µi, changing location during time intervals ∆i ≤ ∆ time-slots. Moreover, consider
the hasMoved beacon parameters Imin, Imax and Ik and the keepRoute beacon interval of δ time-slots. The control
message complexity of µMatrix to perform routing under mobility of m nodes is

Msg(µMatrix(Ctree)) = O

(
m × Ik

Imin
+

n
Imax

)

+ O

(
m × ∆

δ
depth(Ctree)

)
.

Proof. Firstly, we bound the number of hasMoved (hM) beacons, which are sent periodically by all nodes in order to
detect mobility events. As described in Section 3.3.1, when there is no mobility, the periodicity of hasMoved beacons
is 1/Imax. If some node µ has moved (an ack is lost), then Ik messages are sent at intervals of Imin time-slots. Using
the fact that the network is a tree and the number of edges is O(n), this gives a total of messages

Msg(µMatrixhM(Ctree)) = O

(
m × Ik

Imin
+

n
Imax

)
.

Now, we bound the number of keepRoute (kR) beacons. As described in Section 3, mobile nodes send periodic
keepRoute beacons at a frequency of δ to keep the Mtables up-to-date. Consider a node µ ∈ Ctree that has moved
from its home location in time-slot t0 and returned in time-slot t f . Consider the IPparent(µ), CT parenti(µ) in time-
slot t0 < ti < t f , and ∆ = t f − t0. When µ is attached to a CT parenti(µ), µ sends keepRoute beacons at a rate of δ for
at most ∆ time-slots, such beacons travel through the shortest path |(CT parenti(µ), IPparent(µ))| ≤ 2× depth(Ctree).
Furthermore, if µ has descendants, i.e., k(µ) = |IPchildren(µ)| > 0, then each node c ∈ IPchildren(µ) will also send
keepRoute beacons at a rate of δ for at most ∆ time-slots, such beacons will travel the shortest path |(CT parenti(c),
IPparent(µ))| ≤ 2 × depth(Ctree). Therefore, the total control overhead to manage the mobility of a node µ is ≤ 2
×depth(Ctree)(k(µ) + 1)∆/δ, which results in

Msg(µMatrixkR(Ctree)) = O

(
m × ∆

δ
depth(Ctree)

)
.

Finally, the total control overhead is bounded by:

Msg(µMatrix) =Msg(µMatrixhM) +Msg(µMatrixkR)

Once again µMatrix preserves locality when managing mobile routing state of a node µ since no messages need
to be sent to nodes above the LCA(IPparent(µ),CT parent(µ)).

4.3. Routing path distortion
We analyze the route length of messages, addressed to mobile nodes. Consider the underlying collection protocol

(e.g. CTP or RPL), which dynamically optimizes the (bottom-up, or upwards) links in the collection tree Ctree,
according to some metric, such as ETX [5, 6]. We define an optimal route length as the distance of the shortest path
between (s, d), comprised of the upwards links of the collection tree Ctree and the downwards links of the union of
the IPv6 address tree and the reverse-collection tree, i.e., IPtree ∪ RCtree.

Theorem 3. µMatrix presents optimal path distortion under mobility, i.e., all messages are routed along shortest
paths towards mobile destination nodes.

Proof. Consider a mobile node µ ∈ Ctree, which has moved from its home location in time-slot t0. Messages
addressed to µ and originated by some node η ∈ Ctree in time-slot ti > t0 can belong to traffic flows of three kinds:
(1) bottom-up: LCAi(µ, η) = µ; (2) top-down: LCAi(µ, η) = η; and (3) any-to-any: LCAi(µ, η) , µ , η. In case (1),
messages are forwarded using the underlying collection protocol, using the upwards links of the collection tree Ctree,
which is optimal. In case (2), messages are forwarded using Mtables of η and its descendents, until reaching the
mobile location of µ in some time-slot t f > t0. This path is comprised of the downwards links of IPtree ∪ RCtree in
time-slot t0 < ti ≤ t f , which is the optimal route from η to the mobile location of µ in that time-slot. In case (3), the
route between η and LCAi(µ, η) falls into the case (1) and the route between LCA j(µ, η) and µ falls into the case (2),
for some t0 < ti ≤ t j ≤ t f , which is optimal.

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Mobility Modelling

As previously discussed in Section 3.3, the protocol’s mobility management was designed upon the assumption
that devices hold a home location position, for which they eventually return after moving around in the cyber-physical
space. Thus, µMatrix presents better performance under mobility patterns that present this characteristic (see Sec-
tion 4). Although µMatrix can, in principle, also work without the home location assumption, it affects its memory
efficiency. Moreover, other protocols, like MANET [21, 22, 23], are designed to deal with this feature accordingly.

Fortunately, the home location assumption is often present in mobility patterns ranging from human [27, 28, 29,
30] to non-human behavior [31, 32]. Humans mobility pattern tends to include group meeting dynamics and regularity.
For example, people typically have a home, and they go to places nearby (meet friends, work, go shopping, etc.), then,
eventually, they return to their homes. On the other hand, in a non-human mobility pattern, entities move and also
can maintain an initial fixed position where they eventually come back. For instance, consider a team of autonomous
robotic vacuum cleaners, assigned with the task of cleaning an office building. Usually, the robotic cleaners move
randomly and, when the batteries are low, they return to their initial positions to recharge.

These characteristics fit well with the properties of µMatrix, exploiting its performance gains over other solu-
tions for mobile environments. However, there is a lack of available real mobility traces in such domains, usually
due to privacy-related or technical issues. Opportunely, researchers have developed mobility models to fill in this
gap [33, 30, 32]. A mobility model simulates the real mobility behavior and allows us to generate variable traces in
several dimensions: spatial, temporal, and size. We employ mobility models to evaluate µMatrix in different scenario
conditions and highlight its potential to support IoT, IoMT, and Social IoT. Following, we present the mobility model
used in this work, its parameters, and behavior.

5.1. Human Mobility Model

Hess et al. [30] survey available mobility models in the literature. Here, we highlight two: small world in mo-
tion (SWIM) [29] and group regularity mobility model (GRM) [27]. SWIM produces synthetic traces with similar
properties of real mobility traces. It assumes that humans go to places nearby its home, where they meet others, and
eventually they return to their homes. GRM presents the same features of SWIM, but it introduces the dynamics of
group meetings and social community structure. GRM produces synthetic traces with human and group regularity
while other models do not.

These mobility models and others with similar characteristics [30, 32], especially the home location assumption,
are suitable for µMatrix. In this work, we use GRM as mobility model to generate traces based on real traces pa-
rameters. We produce three traces using GRM mobility model: GRM-Inf06, GRM-Camb., and GRM-MIT. Table 2
lists the GRM parameters for each trace6. The simulation parameters are self-explanatory, except by the path time
which defines the time of a mobile entity takes to move from a location to another. The statistical parameters are
parameters of truncated power laws with cut-off where α∗ is the power law exponent and β∗ the cut-off value: αgmt

and βgmt define the group meeting times distribution parameters; αdur and βdur characterize the time that a group of
entities will spend together; finally, αsize and βsize define which entities will be at each group meeting. The reader can
find more parameter details in [27]. Following, we describe the traces produced by GRM:

• GRM-Inf06: this trace was produced based on the Infocom06 [35] real trace. The original trace was produced
during a scientific conference. It has 78 nodes, of which 34 were assigned to 4 groups with sizes 4, 5, 10, and 5.
The original conference trace has three different levels, but we simplify to 1 since GRM does not support this
feature. The trace covers 3 days.

• GRM-Camb: we generate this trace based on the Cambridge [35] real trace, which uses 54 nodes (36 mobile +

18 fixed) distributed into two groups of students in the University of Cambridge. The data set covers 11 days.

• GRM-MIT: the GRM’s authors provided a ready to go GRM-MIT trace [27]. The synthetic trace was produced
based on Reality MIT trace [36] where 100 smart phones were deployed to students in two university buildings.
This is the most representative trace in terms of large area, and higher mobility. In the experiments (Section 6),
we highlight the contrast between GRM-MIT and the other traces.

6We extract the parameters from the following references:[34, 29, 27, 35].

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Parameters GRM-Inf06 GRM-Camb. GRM-MIT

Simulation parameters

of nodes 78 54 100
Duration (days) 3 11 15
Group duration (h) 12 24 720
DIM (m2) 300 500 1000
Path time 120 120 300

Statistical parameters

αgmt 1.35 1.35 2
βgmt 12 24 720
αdur 1.5 1.5 2
βdur 3 20 720
αsize 2.24 2.24 2.24
βsize 30 30 30

Table 2: GRM parameters

The above real traces and others can also be found in Crawdad site [37]. But, the mobility traces usually have
only the contact trace (when two nodes meet each other) and the time when the contact happened. Most of the mobile
network simulators use mobile traces of positions instead of contact traces. Thus, mobility models have the advantage
of generating plausible locations (coordinates) of the nodes, instead of using heuristics to infer positions from contact
trace [38].

5.2. Non-human Mobility Model

In the literature, there are several non-human mobility models available [39, 32, 33]. We highlight the Random
Way Point (RWP) well-known mobility model to evaluate MANET routing protocols [39]. In RWP, the mobility
entities move freely in a random direction, velocity, and acceleration. In this work, we propose the Cyclical Random
Waypoint Mobility Model (CRWP), a mobility model based on the RWP. CRWP is useful to model scenarios where
some of the entities move to different destinations, and eventually, they return to their initial positions, which is the
case of objects (e.g., portable devices) that move in offices, universities, hospitals, factories, etc.

In CRWP, the entities move independently to random destinations and speeds as in RWP. When an entity arrives
at the destination, it stops for a given time Tpause. A difference in CRWP is that after n chosen destinations, the mobile
entity returns to its initial position. Besides that, only k% of mobile entities are outside of their initial position in
each instant of time. CRWP has four parameters: i) PerMobNodes: maximum percentage of entities that are mobile
in each instant of time; ii) Stops: number of stops that the mobile entity do before returning to its original position;
iii) Speed: speed which the mobile entity moves; iv) Tpause: the amount of time that the entity stays in a destination
position.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Parameters Values

Simulation time 1.5 h
nodes 100 in grid
traces 10 traces/scenario

Dim (m2) 400
Node speed constant 4 m/s

CRWP Tpause constant 300 s
CRWP S tops Uni. Distribution (1,3)
CRWP Trace Low Mod. High
PerMobNodes 5% 10% 15%

Table 3: CRWP parameters

Mobility Metrics (Avg) CRWP-Low. CRWP-Mod. CRWP-High

of link failures 1621 3057 4838
Link duration (s) 761.90 457.4 345
Node degree 4.12 4.36 4.44
Time for a link to fail (s) 227.6 216.1 204.5

Table 4: CRWP mobility metrics

We produce three different traces using CRWP by varying the parameter k% (percentage of mobile nodes away
from home location): i) CRWP-Low; ii) CRW-Mod; iii) CRWP-High .Table 3 shows the parameters for each trace.

5.2.1. CRWP mobility scenario analysis
We use the BonnMotion [33] to implement CRWP as well as to generate and analyze mobility traces. Table 3

presents the CRWP simulation parameters. We simulated scenarios where n = 100 mobile entities are assumed to be
in an office or building, and they can move around and return to a predefined home position. The nodes are deployed
in a grid. We divided the mobility scenarios into three groups: low, moderate, and high mobility. Table 4 presents
the average of some mobility metrics [33] that characterize each scenario (low, moderate, and high mobility). We
highlight that the metric number of link failures is an important metric in the performance of the network protocol.
Observe that high mobility scenarios present up to 20 % more topology changes than in low mobility. As expected,
the average link duration decreases when PerMobNode increases. The metrics node degree and time for a link to fail
do not vary much from each mobility scenario.

5.3. Results

Simulation parameter Values
Number of experiments 10 runs/trace

Border Router 1 center
keepRoute period δ = 60 s
RevTT Imax = 60 s, Imin = 1 s, Ik = 3
RPL Trickle Imax = 60 s
Downwards table Size = 20 entries

Table 5: Simulation parameters

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Static

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)
CRWP−Low

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

CRWP−Mod.

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

GRM−MIT

0.25
0.50

0.75
1.000.00

0.25
0.50
0.75
1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

Mob. Matrix MMRPL/RPL AODV CRWP−High

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

GRM−Camb.

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

GRM−Inf06

0.00
0.25

0.50
0.75

1.000.00

0.25

0.50

0.75

1.00

Routing table usage (%)

C
D

F
 n

od
es

 (
%

)

Figure 9: CDF of routing table usage. For µMatrix Mtable + IPchildren, for RPL only downwards routing table. The maximum table size is 20.

6. Evaluation

We implemented µMatrix in ContikiOS [40] and made the source code publicly available 7. The experiments
were executed on Cooja [41] simulator and the following three baseline protocols were used: RPL, AODV, and
MMRPL [12]. The former two protocols were already available on ContikiOS, while the latter we implemented on
top of the available RPL implementation.

We simulated seven different scenarios. The first scenario represents the static network, in which devices do not
move. One can interpret this scenario as the traditional static IoT. The remaining scenarios present different mobility
patterns by using CRWP and GRM as mobility models (see Section 5 for more details): 3 using CRWP named low,
moderate, and high; 3 using GRM which we refer as Inf06, Camb., and MIT. One can interpret these scenarios as SIoT
or IoMT cyber-physical mobile spaces being a step forward from standard IoT. Table 5 lists the default simulation and
protocols parameters. In each plot, the bars or points represent the average, and the error bars indicate the confidence
interval of 95 %. The curves are the maximum table usage for a given mobility scenario.

For static and CRWP scenarios, we executed an application on top of the network layer, in which each node
sends 20 data packets to the border router at a rate of 1 packet per minute. Upon receiving a data packet, the border
router confirms to the sender with an ack packet that has the size of a data packet. The application waits for 10 min
for protocols initialization and stabilization before it starts sending data. The nodes start sending their data in a
simulation time randomly chosen in (10, 20] min. The mobility traces were configured to start after the stabilization
time. Additionally, we generate 10 mobility traces for each scenario. Each trace and the static scenario were run 10
times, totaling 3010 executions.

7https://bps90.github.io/mmatrix-code/

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

10

1000

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

N
um

be
r

of
 B

ea
co

ns
 (

lo
g)

RPL MMRPL AODV Mob. Matrix

Figure 10: Number of control packets.

We ran a similar application for GRM scenarios except that the nodes, after sending their data packets, reschedule
to send the data packets again in a simulation time randomly chosen in next [1, 12] hours. This process repeats indef-
initely until the maximum GRM simulation time is achieved. For each trace, we run 5 times, totaling 15 executions.

In Figure 9, we show the Cumulative Distribution Functions (CDFs) of the percentage of downward routing table
usage among nodes, for each scenario. In the static scenario, all µMatrix nodes use up to 25% of available downwards
route entries, while in RPL and MMRPL ≥ 75% of nodes use ≥ 25% of entries. MMRPL and RPL present almost
identical routing memory usage, since the only different between MMRPL RPL is the mobility detection mechanism,
which does not affect memory usage. In AODV, the devices flood the network with route queries to find the packet’s
destination, then the devices opportunistically fill all available route entries. Therefore, AODV ≈ 100% of nodes use
100% of route entries. Indeed, for some RPL nodes and almost AODV nodes, 100% of table entries are used. Usually,
these nodes that use more memory are near the border router, and they play a fundamental role in top-down routing.
If they overflow their downward routing table, then the traffic pattern top-down suffers from poor reliability, and some
nodes may be unreachable.

µMatrix also presents more efficient memory footprint than other protocols, in non-human mobility scenarios
(CRWP). The difference among the protocols grows up as the nodes mobility increase. Figure 9 shows CRWP-{Low,
Mod., High} memory usage. In these scenarios, µMatrix uses up to 65% of the downward routing table, while > 15%
of RPL devices present full table usage as well as almost all devices running AODV.

For human mobility scenarios (GRM), we highlight two of them: GRM-MIT and GRM-Camb.. The first one, it
presents higher mobility, larger area, number of nodes and duration than other scenarios. On the other hand, GRM-
Camb. presents fewer nodes and mobility than MIT. Figure 9 also shows the protocols under GRM mobility pattern.
In GRM-MIT, µMatrix presents lower downward routing table than RPL and AODV. For RPL and AODV, almost all
route entries are used causing poor reliability in top-down and any-to-any routing. Therefore, µMatrix is more efficient

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.00

0.25

0.50

0.75

1.00

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

B
ot

to
m

−
up

 P
R

R
 (

%
)

RPL MMRPL AODV Mob. Matrix

Figure 11: Bottom-up routing success rate.

in the most dynamic scenario. In the GRM-Camb. scenario, RPL and AODV seem to presented better results, but
GRM-Camb. has only 54 nodes and the routing table size is only 20, and yet some nodes consume all routing memory
available. In GRM-Camb., µMatrix uses ≤ 65% of downwards route entries.

Another relevant analysis is the control messages (or beacons) overhead of each routing protocol. µMatrix sends
beacons to react to topology changes quickly by using the RevTT algorithm and the underlying collection protocol
beaconing scheme. The protocol AODV sends route queries to find routes between the sender and receiver. RPL sends
controls beacons to build and maintain its routing structures. µMatrix allows tuning the RevTT fire rate to reduce the
sending beacons, but note that the reverse trickle adjustment faces a trade-off between quick mobility discovery and
control overhead. In Table 5, we set Imax of RPL and µMatrix evenly and close to data packet rate, which gives to the
protocols the fair opportunity to identify topology changes and react to them.

Figure 10 shows the amount of control traffic overhead of the protocols (the total number of beacons sent during
the entire simulation). AODV is a reactive routing protocol (create routes on demand); therefore it sends fewer control
packets than µMatrix, MMRPL, and RPL, which are pro-active. However, AODV presents higher losses than others
evaluated protocols as we show ahead. MMRPL, µMatrix, and RPL present close control overhead being µMatrix
slightly more economical. The difference between RPL and µMatrix does not exceed 8.6%. The different of quantities
in GRM traces to others is only due to the simulation time.

Figure 11 shows the Packet Reception Rate (PRR) in bottom-up data traffic. In all scenarios, µMatrix presents
higher or equal PRR than RPL, MMRPL or AODV. Upon node mobility, µMatrix realizes that a topological change
happened by using RevTT, it quickly triggers the underlying route discovery, and as a consequence, bottom-up routes
are rapidly rebuilt, and the reliability increases. MMRPL and RPL also present high reliability on bottom-up data
traffic overall evaluated scenarios but being slightly less reliable than µMatrix. AODV, in the static scenario, presents
≈ 100% PRR, however, in non-human mobile scenarios, its reliability decreases as the mobility increases. In human
mobility, for example, GRM-MIT (higher mobile scenario), AODV also presents poor reliability in bottom-up routing.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.00

0.25

0.50

0.75

1.00

Static

CRWP−Low

CRWP−Mod.

CRWP−High

GRM−MIT

GRM−Camb.

GRM−Inf06

To
p−

do
w

n
P

R
R

 (
%

)

RPL MMRPL AODV Mob. Matrix Inevitable Losses

Figure 12: Top-down routing success rate. The transparent bar represents inevitable losses.

Figure 12 shows the PRR for top-down data traffic. In the plot, “inevitable losses” are represented with a transpar-
ent bar, and they refer to the number of messages that were lost due to the node being in transit from one location to
another. Meanwhile, messages were routed before the route updated mechanism (see Section 3), in which case, there
was no valid path to the destination, and the packet loss is inevitable.

It is possible to see that in all scenarios µMatrix presents higher PRR than other protocols in top-down data traffic
routing. Under no mobility, µMatrix presented 99.9% of success rate, while RPL and MMRPL presented < 21%,
and AODV presented ≈ 26%. In non-human mobility scenarios, µMatrix PRR decreases slowly when more mobility
is allowed. In the harshest mobility scenario, CRWP-High, µMatrix shows PRR of 95% while AODV has 68% and
RPL has 17%. RPL, MMRPL, and AODV presented top-down PRR 19%, 28%, and 68% rescpectivelly. µMatrix,
in GRM scenarios, presented at least 97% of top-down PRR, and RPL exhibited the lowest PRRs ranging from 16%
to 35% followed closely by MMRPL. AODV presented PRR up to 75%, but it delivery rate with acknowledgment is
low as we show ahead.

RPL, MMRPL and AODV suffer from poor reliability because of the lack of memory (see Figure 9) to store
top-down routes, while µMatrix is more efficient in the memory usage, as we have shown in complexity analysis in
Section 4.

Figure 13 shows the trade-off between control message overhead and successful delivery rate. Figure 13 is com-
posed of four graphics. The two top graphics are for bottom-up traffic, and the two lower graphics are for top-down
traffic. The two left graphics are for CRWP mobility model, and the two right graphics are for GRM mobility model.
In each graphic, it is desirable a high delivery rate with a low number of beacons (upper-left region). However, to
identify mobility passively and quickly, usually, it requires more control messages. Therefore, protocols that balance
this trade-off are fundamental in the IoT, IoMT or SIoT context, especially when the devices have energy constraints.

Note that in all scenarios and traffic patterns, µMatrix presents higher delivery rate and a balanced number of

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

●
●

●

●

●

●

Low
Mod.

High

Low

Mod.

High

Low

Mod.

High

Low

Mod.

High

●● ●●● ●

Low
Mod. High

Low

Mod.

High
Low

Mod. HighLow

Mod.

High

●
●●

●

●●

MIT

Camb.

Inf06

MIT

Camb.
Inf06 MIT

Camb.

Inf06

MIT

Camb.

Inf06

●

●

●
●

●

●

MITCamb.
Inf06

MIT

Camb.

Inf06 MIT
Camb.

Inf06

MIT

Camb.

Inf06

CRWP GRM
B

ottom
−

up
Top−

dow
n

0.05 0.10 0.15 0 5 10 15

0.2

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

Number of Beacons (x106)

D
el

iv
er

y
R

at
e

(%
)

●● RPL MMRPL AODV Mob. Matrix

Figure 13: The trade-off between control message overhead and successful delivery rate.

beacons. AODV is the most economical concerning message overhead, but it suffers from reliability, especially in
high mobility scenarios and both data traffic pattern. RPL shows the lower delivery rate and higher control message
overhead. Also, the MMRPL and RPL beacons go from the node to the border router to recreate routes downwards.
µMatrix reduces this costs by preserving route updates locality as discussed in Section 3 and analyzed in Section 4.
In general, MMRPL presented better delivery rate than RPL at the cost of more beacons.

Figure 14 depicts the trade-off between delivery with acknowledgment rate and round trip time (RTT). Note that
only round-trip messages were considered. We plot a graphic for each of the seven mobility scenarios. RPL, MMRPL,
and AODV suffer from losses in the top-down traffic (as explained in Figure 12). µMatrix presents the higher delivery
with acknowledgment rate. The mean RTT is similar between the four protocols except for CRWP-High scenario.
In the CRWP-High scenario, µMatrix presents higher RTT because, when there is no valid route between the sender
and the receiver, CTP [5] (underlying routing protocol employed) keeps some messages in a buffer for a while, then
the forwarding engine (see Section 3) eventually sends the messages. Therefore, in high mobile scenarios where the
topology constantly changes, some messages will be delivered with some delay; thus µMatrix also presents higher
delivery with acknowledgment rate.

7. Conclusions

In this work, we have designed, analyzed and evaluated the Mobile Matrix, a mobile routing protocol with a
hierarchical addressing scheme for resource-constrained devices largely employed in IoT, IoMT, and Social IoT. In
the new IoT context, the “things” are able to move and do social ties; thus µMatrix represents a step towards this
new mobile cyber-physical environment by allowing the devices to move around while providing device mobility
transparency to upper layers in the network stack. The protocol has low memory footprint, adjustable control message
overhead, optimal routing path distortion, and provides any-to-any communication. We provide a formal analysis of
µMatrix memory footprint, control message overhead, and the routing path distortion. We also introduced the CRWP,
a non-human mobility model suited for scenarios with mobile devices that have cyclical movement patterns.

We evaluated the routing protocols under human and non-human mobility patterns. Our µMatrix implementation
offers ≥ 95% of top-down PRR in highly dynamic and mobile scenarios, while other protocols ≤ 75%. This difference
is a consequence of the downwards routing table usage, in which the devices running µMatrix protocol use up to 65%
of routing entries available while for RPL, MMRPL and AODV several devices presented full routing table implying

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

●●

●●

●●

●●

●●

●●

●●

GRM−Inf06

CRWP−High GRM−MIT GRM−Camb.

Static CRWP−Low CRWP−Mod.

0 4 8 12

0 4 8 12 0 4 8 12

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Mean RTT (s)

M
ea

n
de

liv
er

y
ra

te
 w

ith
 a

ck
no

w
le

dg
m

en
t (

%
)

●● RPL MMRPL AODV Mob. Matrix

Figure 14: The trade-off between delivery rate with acknowledgment and round trip time (RTT).

in poor top-down and any-to-any reliability. It was also shown that existing routing protocols have poor delivery with
acknowledgment rate.

We have shown that existing routing protocols do not meet several IoMT and SIoT requirements such as mobility
management, memory, and energy efficiency in routing. Thus, efforts in that direction, e.g., the µMatrix, enable several
opportunities for future research in IoMT and SIoT network stack support. For instance, it would be interesting to
evaluate: i) how µMatrix and others ready-to-go protocols perform under IoMT or SIoT applications in a large-scale
network with thousands of mobile devices; ii) how to passively detect mobility, the efficacy of this technique may
lead to better energy efficiency of routing protocols for IoMT and SIoT. It is also worth mentioning the possibility of
extending µMatrix to allow devices to move between different network domains.

Acknowledgements

We thank the research agencies CAPES, CNPq and FAPEMIG.

References

[1] B. Afzal, M. Umair, G. A. Shah, E. Ahmed, Enabling iot platforms for social iot applications: Vision, feature mapping, and challenges, Future
Generation Computer Systems.

[2] L. Atzori, A. Iera, G. Morabito, M. Nitti, The social internet of things (siot)–when social networks meet the internet of things: Concept,
architecture and network characterization, Computer networks 56 (16) (2012) 3594–3608.

[3] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, W. Zhao, A survey on internet of things: Architecture, enabling technologies, security and
privacy, and applications, IEEE Internet of Things Journal 4 (5) (2017) 1125–1142.

[4] K. Nahrstedt, H. Li, P. Nguyen, S. Chang, L. Vu, Internet of mobile things: Mobility-driven challenges, designs and implementations, in:
Internet-of-Things Design and Implementation (IoTDI), 2016 IEEE First International Conference on, IEEE, 2016, pp. 25–36.

[5] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva, D. Moss, P. Levis, Ctp: An efficient, robust, and reliable collection tree protocol for
wireless sensor networks, ACM TOSN 10 (1) (2013) 16.

[6] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks, RFC 6550 (2012).

[7] O. Iova, P. Picco, T. Istomin, C. Kiraly, RPL: The Routing Standard for the Internet of Things... Or Is It?, IEEE Communications Magazine
54 (2016) 16–22.

[8] B. S. Peres, O. A. d. O. Souza, B. P. Santos, E. R. A. Junior, O. Goussevskaia, M. A. M. Vieira, L. F. M. Vieira, A. A. F. Loureiro, Matrix:
Multihop Address Allocation and Dynamic Any-to-Any Routing for 6LoWPAN, in: ACM MSWiM, 2016, pp. 302–309.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[9] M. Weiser, The computer for the 21st century., Mobile Computing and Communications Review 3 (3) (1999) 3–11.
[10] A. Oliveira, T. Vazão, Low-power and lossy networks under mobility: A survey, Computer Networks 107 (2016) 339–352.
[11] O. Gaddour, A. Koubâa, R. Rangarajan, O. Cheikhrouhou, E. Tovar, M. Abid, Co-RPL: RPL routing for mobile low power wireless sensor

networks using Corona mechanism, in: Industrial Embedded Systems (SIES), 2014 9th IEEE International Symposium on, IEEE, 2014, pp.
200–209.

[12] C. Cobarzan, J. Montavont, T. Noel, Analysis and performance evaluation of RPL under mobility, in: IEEE ISCC, 2014, pp. 1–6.
[13] K. C. Lee, R. Sudhaakar, L. Dai, S. Addepalli, M. Gerla, RPL under mobility, in: IEEE CCNC, IEEE, 2012, pp. 300–304.
[14] I. El Korbi, M. B. Brahim, C. Adjih, L. A. Saidane, Mobility enhanced RPL for wireless sensor networks, in: IEEE ICUFN, 2012, pp. 1–8.
[15] H. Fotouhi, D. Moreira, M. Alves, mRPL: Boosting mobility in the Internet of Things (2015).
[16] K.-S. Hong, L. Choi, DAG-based multipath routing for mobile sensor networks, in: IEEE ICT, 2011, pp. 261–266.
[17] B. P. Santos, M. A. M. Vieira, L. F. M. Vieira, eXtend collection tree protocol, in: IEEE WCNC, 2015, pp. 1512–1517.
[18] S. Dawson-Haggerty, A. Tavakoli, D. Culler, Hydro: A hybrid routing protocol for low-power and lossy networks, in: IEEE SmartGridComm,

2010, pp. 268–273.
[19] C. Perkins, D. Johnson, J. Arkko, Mobility support in IPv6 (2011).
[20] L. Bellier, K. E. Malki, C. Castelluccia, H. Soliman, Hierarchical Mobile IPv6 (HMIPv6) Mobility Management, RFC 5380 (2008).
[21] C. Perkins, E. Belding-Royer, S. Das, Ad hoc on-demand distance vector (AODV), RFC 3561 (2003).
[22] T. Clausen, P. Jacquet, Optimized link state routing protocol (olsr), RFC 3626 (2003).
[23] K. Kim, S. D. Park, G. Montenegro, S. Yoo, N. Kushalnagar, 6lowpan ad hoc on-demand distance vector routing (load), Network WG Internet

Draft 19.
[24] K. Kim, G. Montenegro, S. Park, I. Chakeres, C. Perkins, Dynamic manet on-demand for 6lowpan (dymo-low) routing, Internet Engineering

Task Force.
[25] B. P. Santos, O. Goussevskaia, L. F. Vieira, M. A. Vieira, A. A. Loureiro, Mobile Matrix: A Multihop Address Allocation and Any-to-Any

Routing in Mobile 6LoWPAN, in: Proceedings of the 13th ACM Symposium on QoS and Security for Wireless and Mobile Networks,
Q2SWinet ’17, 2017, pp. 65–72.

[26] P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: A Self-regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor
Networks, in: USENIX NSDI, 2004, pp. 2–2.

[27] I. O. Nunes, C. Celes, M. D. Silva, P. O. Vaz de Melo, A. A. Loureiro, GRM: Group Regularity Mobility Model, in: Proceedings of the 20th
ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM ’17, ACM, New York, NY,
USA, 2017, pp. 85–89.

[28] X. Hong, M. Gerla, G. Pei, C.-C. Chiang, A group mobility model for ad hoc wireless networks, in: Proceedings of the 2nd ACM international
workshop on Modeling, analysis and simulation of wireless and mobile systems, ACM, 1999, pp. 53–60.

[29] A. Mei, J. Stefa, SWIM: A Simple Model to Generate Small Mobile Worlds, in: IEEE INFOCOM 2009, 2009, pp. 2106–2113.
[30] A. Hess, K. A. Hummel, W. N. Gansterer, G. Haring, Data-driven human mobility modeling: A survey and engineering guidance for mobile

networking, ACM Computing Surveys (CSUR) 48 (3) (2016) 38.
[31] T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc network research, Wireless communications and mobile computing

2 (5) (2002) 483–502.
[32] V. F. Mota, F. D. Cunha, D. F. Macedo, J. M. Nogueira, A. A. Loureiro, Protocols, mobility models and tools in opportunistic networks: A

survey, Computer Communications 48 (2014) 5–19.
[33] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, M. Schwamborn, BonnMotion: a mobility scenario generation and analysis tool, in: EAI

ICST, 2010, p. 51.
[34] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, J. Scott, Pocket switched networks: Real-world mobility and its consequences for

opportunistic forwarding, Tech. rep., University of Cambridge, Computer Laboratory (2005).
[35] P. Hui, J. Crowcroft, E. Yoneki, Bubble rap: Social-based forwarding in delay-tolerant networks, IEEE Transactions on Mobile Computing

10 (11) (2011) 1576–1589.
[36] N. Eagle, A. S. Pentland, Reality mining: sensing complex social systems, Personal and ubiquitous computing 10 (4) (2006) 255–268.
[37] D. Kotz, T. Henderson, Crawdad: A community resource for archiving wireless data at dartmouth, IEEE Pervasive Computing 4 (4) (2005)

12–14.
[38] J. Whitbeck, M. D. de Amorim, V. Conan, Plausible Mobility: Inferring Movement from Contacts, in: Proceedings of the Second International

Workshop on Mobile Opportunistic Networking, MobiOpp ’10, ACM, New York, NY, USA, 2010, pp. 110–117.
[39] F. Bai, A. Helmy, A survey of mobility models, Wireless Adhoc Networks.
[40] A. Dunkels, B. Gronvall, T. Voigt, Contiki-a lightweight and flexible operating system for tiny networked sensors, in: IEEE LCN, 2004, pp.

455–462.
[41] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter, P. J. Marrón, COOJA/MSPSim: Interoperability Testing for

Wireless Sensor Networks, in: Simutools’09, 2009, pp. 1–27.

24

