Enriching Traffic Information with a Spatiotemporal Model based on Social Media

Bruno P. Santos Paulo H. L. Rettore Heitor S. Ramos Luiz F. M. Vieira Antonio A. F. Loureiro

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Agenda

- Contextualization
- Motivation

T-MAPS • A case Study

Introduction

The quality of life in a city is, in part, a
 reflection of the mobility which the city offers

It implies in the constant need for planning and management of the transportation system.

Introduction

◎ Who are interested in?

- Governments
- Researchers
- Industries

How are they studying and planning the Intelligent Transportation Systems (ITS)?

- Using raw data sources
 - Inductive loops (velocity, density, and flow)
 - Traffic cameras
 - Origin-destination matrix

Introduction

Who are interested in?

- Governments
- ✗ Unfortunately, the access to these data sources is, in general, limited to those who are connected to governmental entities or large corporations.

Inductive loops (velocity, density, and flow)

- Traffic camera
- Origin-destination matrix

Introduction

O The Location-Based Social Media (LBSM)

• Ex: Twitter, Instagram, and Foursquare

LBSM as an alternative

- Low cost
- Users sharing their
 - Thoughts
 - Viewpoints
 - Their feelings
 - Traffic conditions

Introduction

In this work, we investigated the traffic scenario from the lens of LBSM

We conducted a study to understand better the relationship between the real traffic scenario and the data provided by Twitter

Introduction

Goals

- **LBSM data collection and its characterization** as a data source to describe the traffic scenario
- **Twitter MAPS (T-MAPS):** we propose a low-cost spatiotemporal model to improve the description of traffic conditions based on tweets.

Data collection

Ordinary users X Specialist users

9

Data collection

Ordinary users X **Specialist users**

Total of 21 accs:	3680
@WazeTrafficNYC	7850
<pre>@TotalTrafficNYC</pre>	20267
@511NYC	126925
Acc name	# Tweets

J Follow	Foll	ow
----------	------	----

Accident in #Harlem on The Harlem River Dr SB at The Willis Ave Br, stop and go traffic back to 5th Ave, delay of 2 mins #traffic

7:47 AM - 14 Oct 2016 · Manhattan, NY, United States

Traffic event description

 Total Traffic NYC
 Follow

 Initial Traffic NYC
 Initial Traffic NYC

 Accident in #Harlem on The Harlem River Dr SB at The Willis Ave Br, stop and go traffic back to 5th Ave, delay of 2 mins #traffic

 7:47 AM - 14 Oct 2016 · Manhattan, NY, United States

 Image: State Stat

Traffic condition

Location description. Some Tweets have geotag.

@511NYC

Data collection <u>Spatial</u> coverage

Highland Lalv Bridgeport Stamford Dobtes Serry Miller P Yonk No Riverhand dilaka Smentaw Line Grov Morris P Ains Cariter Noriches Fortiam Park CONTRACT. Semandaville Borkeley Cast Rocksway Edisor Keelsburg Kendall Fark Valawin Highlands Davto FERINA Bark ton Neadow Branch Mest Fillehold

@TotalTrafficNYC

Stally Pair

Tweets in NY

Spatial coverage in NY of two specialist accs

Data collection <u>Temporal</u> coverage

Twitter as a traffic sensor

How related are the tweets to the traditional traffic sensor?

18

Data:

- Jam Factor (Here developer API)
- # tweets

The highest correlation (0.8) appears when the lag is +1 meaning #tweets curve is 1 hour ahead of JF

Twitter MAPS (T-MAPS)

O Modeling Process

- 1. Data acquisition
- 2. Filtering and data fusion process
- 3. Metrics

т-марs Step 1 - Data Acquisition

New York City boundaries

Data from LBSM

T-MAPS Step 2 - Filtering and Data fusion

G(V,E)

- V(G) = map sub-regions
- E(G) = adjacent regions

- Spatiotemporal assignment
- Filtering and bind data to regions
- Remove data inconsistent

Step 3 - Data Fusion and Metrics

T-MAPS

Time Discretization - metric - instant

T-MAPS

A Case Study - T-MAPS

Manhattan

- 29 official borough
- 21 specialist accounts from Twitter.
 - ~ 280 K geotagged tweets
 - Oct Dec 2016

T-MAPS

- Shortest Path Dijkstra Algorithm
- Google Directions

A Case Study T-MAPS Applicability

A Case Study **T-MAPS Applicability**

A Case Study **T-MAPS Applicability**

Hours 97:00 15:00 19:00 Sun Dec 04 Mon Dec 05 Tue Dec 06 Wed Dec 07 Thu Dec 08 Fri Dec 09 Sat Dec 10 Sun Dec 11 100ocumulated 75 Median ranges from 60% to 66% 50 25 100-Similarity (%) 75 Average 50 25 100-75 Median ranges from 50% to 60% 50 25

A Case Study **T-MAPS Applicability**

Hours 97:00 15:00 19:00 Sun Dec 04 Mon Dec 05 Tue Dec 06 Wed Dec 07 Thu Dec 08 Fri Dec 09 Sat Dec 10 Sun Dec 11 100ccumulated 75 Median ranges from 60% to 66% 50 25 100-Similarity (%) 75-Average Median ranges from 63% to 67% 50 25 100-75 Median ranges from 50% to 60% 50 25

LBSM data collection

RM punctuation

RM stop words

R library: [syuzhet, tm, stringr, wordcloud]

33

IEEE Symposium on Computers and Communications 2018

× '/,.;*"?!/... **×** the, is, at, which...

 \bigcirc

RM punctuation

RM stop words

Jamming, jammed \rightarrow Jam Ave, Av \rightarrow Avenue St \rightarrow Street

LBSM data collection

- RM punctuation
- RM stop words

LBSM data collection

- RM punctuation
- RM stop words

## A	ng. A	nticip. Di	sg.	Fe	ar	Joy Sad	. Su	rpri.	Trust l	Veg. I	Pos.
## 1	0	1	0	0	1	0	0	1	0	1	
## 2	0	0	0	0	0	0	0	0	0	0	
## 3	0	0	0	0	0	0	0	0	0	0	
## 4	0	1	1	0	1	1	0	2	1	2	
## 5	0	1	0	0	1	0	1	2	0	2	
## 6	0	0	0	0	0	0	0	0	0	0	

- LBSM data collection
- RM punctuation
- RM stop words
- Stemming
 Score
 Pos ou Neg?
 Routes and Map

	S Q Whe	হু। 🗐 14: are to? 🚽
Sentiment	Route Info.	Area Tags
Midtown South		
Clinton	termin ncider uthorit	
Lincoln Square	bomotowi dr	
Upper West Si	de	
Morningside He	eights	
Manhattanville		
Hamilton Heigl	hts	

Conclusions

- We presented the T-Maps, a low-cost spatiotemporal model to enhance traffic and transit navigation context, using tweets
 - Three route description services, Route Sentiment, Route Information, and Area' Tags.
 - The similarity reached 62%, and for a quarter of the evaluated trajectories, the similarity achieved up to 100%. Compared with Google Direction route recommendation

Conclusions

O As future work

- Extend the T-Maps applying strategies to process the data and offer more valuable information
- Employ regular users accounts from LBSM and uses reputation models to handle conflicting information
- Extend T-Maps to larger regions, taking into account the computational problem

Thanks!

Questions?

{bruno.ps, rettore, lfvieira, loureiro}@dcc.ufmg.br heitor@ic.ufal.br