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Abstract—People use smart transportation systems to move
around in smart cities, producing a massive amount of valuable
mobility data. Although this characteristic enables the devel-
opment of many intelligent applications, it can expose users
to privacy threats. Location privacy is an issue addressed in
many mobility contexts, in which there is a privacy concern.
Currently, there are some proposals to tackle this problem,
and some questions naturally arise: are these proposals suitable
for a dynamic environment, such as smart mobility? What are
the impacts of mobility on privacy? In this work, we answer
these questions to explore location privacy in smart mobility
considering open and online data, one of the fundamental pillars
of smart city platforms. We have evidenced the hypothesis that
mobility can impact privacy approaches of anonymization (mix-
zones) and obfuscation (GEO-I) in the context of smart mobility.
For this, we performed experiments to characterize and find
similarities in the statistical distributions extracted from two
stay points metrics, which operate as substrates to build location
privacy protection mechanisms. We use an accuracy metric to
quantify the datasets’ distributions that matched each other. We
conducted a comprehensive evaluation of seven real datasets
of mono or multimodal mobility. The results showed that the
stay point count metric reached 100% and 83.3% accuracy for
coarse-grained (person and vehicle) and fine-grained (bus, taxi,
and person) data. Additionally, we show a similarity between
distributions for the same vehicle type for mono and multimodal
datasets. Results suggest that privacy has a high dependence on
mobility in different granularity levels.

Index Terms—Smart Cities, Smart Mobility, Location Privacy,
Mix-zone, Geo-indistinguishability, Statistical Analysis.

I. INTRODUCTION

Human mobility refers to the movement of human beings
in space and time [1]. The study of human mobility

has a fundamental role in developing smart cities, such as
urban planning, estimating migratory flows, and developing
traffic forecasting applications to help people, vehicles, and
things move safely and efficiently [1], [2]. In this context,
Smart Mobility emerged as an essential feature associated with
smart cities [3]. For example, Smart Mobility can foster a
smart transportation system that improves traffic safety and
efficiency, reduces citizens’ time commuting, and enhances
the quality of life [4]. In such a smart transportation scenario,
users can combine different transportation modes (e.g., bike,
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bus, car, and walking) to reduce travel times, traffic, and air
pollution. Moreover, people, vehicles, and things act as sensors
and produce geo-tagged mobility data, valuable to help the
management of assets and efficiently interact with resources
and services in smart mobility scenarios. As a result, we
typically find three datasets classes according to the transport
mode prevalence and its granularity level:

1) Unimodal traces (UT): all trajectories contained in a
dataset have a single transportation mode, i.e., there is
only one vehicle type in the dataset (Fig. 1a I)).

2) Multimodal traces with unimodal trajectories (MT-UT):
in a single dataset, there may be at least more than one
transport mode, but the trajectories are associated with a
single transport mode (Fig. 1a II)).

3) Multimodal traces with multimodal trajectories (MT-
MT): in a single trajectory, there may be more than one
mobility type. In this scenario, a user can take a taxi, then
walk, and, finally, get a bus to reach his/her destination
(Fig. 1a III)).

The benefits of smart mobility are clear, but there are
also many privacy concerns. For example, mobility datasets
contain not only a set of positions on a map or sensitive
places such as home and workplace, among other Points of
Interest (POIs). The contextual information attached to a trace
tells much about the individuals’ habits, interests, activities,
and relationships [5]. Thus malicious entities can be mining
latent information on these datasets to identify and track users
without their consent, which aggravates the privacy threats
related to sharing multimodal mobility data, voluntarily or
not [6].

Location privacy is a longitudinal issue in mobility. It is
a particular type of information privacy for avoiding other
entities from learning one’s current or past location [7].
Notably, it has gained attention when the Internet of Things
(IoT) and the Internet of Vehicles (IoV) contributed to smart
mobility connecting objects sharing location information, but
unrestricted [8]. Some traditional strategies for anonymization
and obfuscation, such as Mix-zones [9] and GEO-I [10],
respectively, are being applied to provide location privacy.
However, when this happens, we have to ask whether these
traditional location privacy approaches are suitable for such
a new smart mobility environment, as Scenarios 2 and 3 de-
scribed above. Location privacy solutions based on obfuscation
or anonymization are generally static regarding the setup of its
parameters. They are not tuned for different types of datasets
and their scenarios and, thus, are not resilient against het-
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erogeneous mobility data containing other mobility behaviors.
Furthermore, what is the degree of impact of mobility on
location privacy?

In this paper, we explore the influence of mobility on
location privacy. For this, we propose a framework that allows
us to characterize and analyze the similarity between types of
transport modes through metrics extracted from Stay Points
(SPs) – regions in which an entity stays for a minimum time
interval [11]. Particularly, we analyze two SPs metrics: Stay
Point Count (SPC), which represents the total of different
locations visited by users; Stay Point Duration (SPD), which
refers to the time a user spends at a location. Unlike other
mobility metrics, SPs can provide directions for parameter
settings of Location Privacy Protection Mechanisms (LPPMs)
techniques, such as the coverage radius size and noise level.
Those SPs can be used as indicators of Point of Interests
(POIs) and traffic intensity to choose the best place to apply
LPPMs [11], [12], [13]. Thus, when studying the distributions
of SPs metrics from different transport modes, we found that
each transport mode can influence the LPPMs parameters
tuning. In the literature, several approaches have been using
equal LPPMs parameters for different transport modes [14],
[15], [16]. However, this work aims to provide empirical
evidence on the impact of mobility on location privacy for
different transport modals, without delving into the theoretical
analysis, that location data from different modes of transport
must be protected by LPPMs calibrated independently.

We conducted a comprehensive evaluation applied to seven
real datasets for these analyses (in which six of them refer
to the case UT, and one refers to the cases MT-UT and MT-
MT). The results showed that the SPC metric reached 100%
and 83.3% accuracy for coarse-grained (person and vehicle)
and fine-grained (bus, taxi, and person) data, respectively.
Additionally, we show a similarity between distributions for
the same vehicle type for mono and multimodal datasets.
Results suggest that mobility has a high impact on privacy
in different granularity levels, enabling us to build a resilient
mobility-aware privacy solution. To our knowledge, this is the
first study that analyzes stay points to observe the impacts
of mobility on location privacy. An essential step in location
privacy research, once stay points, is a powerful mechanism
for positioning and setting privacy approaches.

II. RELATED WORK

This section presents some relevant proposals in the litera-
ture about mobility analysis and fallacies found in studies of
location privacy.

A. Statistical Analysis of Mobility

The analysis of statistical properties of human mobility
can reveal valuable insights for developing various services,
including opportunistic networks, traffic monitors, and recom-
mender systems [18], [19], [25]. Thus, exist a broad study
on the characterization of distributions extracted from metrics
of different mobility contexts, such as banknotes in human
mobility, trip displacement in mono/multimodal transport, de-
gree distribution in Online Social Networks (OSNs), yellow

intervals on intersections from monomodal transport, and
distance and transfer time between POIs in-place semantics
context. However, there is little research to understand location
privacy from the statistical analysis of mobility aspects, such
as stay point metrics. Following, we highlight some relevant
literature proposals that pursue distributions characterization
of the modal datasets focusing on stopping metrics, such
as stopping time in semaphores’ yellow light, waiting times
between displacements (or trip interval), and traffic accident
duration.

Brockmann et al. [17] explored traveling statistics of human
mobility over a million individual displacements by analyzing
banknotes’ circulation in the United States. They concluded
that the distribution of the traveling distances decays as a
power law, indicating that trajectories of banknotes are similar
to Lévy flights [26]. Also, they showed that the probability
of pause time distribution (staying in a restricted region) is
characterized by a long tail leading to a sub-diffusive process.

Zhao et al. [18] explored the Lévy walk behavior of human
mobility [26]. They decomposed mobility patterns of multi-
modal datasets into different classes according to transport
modes such as, Walk/Run, Bike, Train/Subway, and Car/Tax-
i/Bus [18]. They concluded that human mobility could be
modeled as a mixture of different transport modes. Moreover,
single movement patterns can be approximated by a log-
normal distribution rather than a power-law distribution.

Xia et al. [19] also analyzed human mobility in both subway
and taxi with three metrics: trip displacement (TD), trip dura-
tion (TD), and trip interval (TI). The results showed that TD
patterns by subway and taxi are similar and follow log-normal
distribution rather than an exponential model. Additionally, TD
on weekends is different from that on weekdays, no matter
the modal. The TD metric is fitted to Weibull distribution
for subway and log-normal distribution for taxis. For TI, they
concluded that the Weibull distribution can fit the probability
curve by taxi rather than log-normal distribution. For the
subway, the TI obeys the distribution composed of Weibull
and log-normal distributions.

Li et al. [21] explored the stopping behavior during yellow
intervals on the semaphores. Notably, they evidenced that
the survival curves extracted from stopping time confirm the
existence of group-specific effects on drivers based on two
metrics: stopping time and drivers’ age. The results showed
that the log-logistic-based frailty model with age as a grouping
variable presents the best goodness of fit and prediction
accuracy.

Zhang et al. [25] investigated the prediction curves of traffic
accident duration, which provide an important basis for traffic
mitigation measures after accidents. They applied AIC and
BIC to fit the probability distribution of the accident duration,
and the results showed that the log-normal distribution fitted
best.

Alessandretti et al. [22] verified the relationship between
spatial and temporal properties of human mobility using
trajectories of 850 individuals of Copenhagen Network Study
composed of GPS and Wi-Fi data. They showed that a log-
normal distribution best describes displacements’ distribution
and waiting times between displacements. They also noticed
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(a) Mobility scenarios present in
smart mobility datasets.
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(b) Mix-zone with k = 3. (c) GEO-I: privacy levels in relation to r.

Fig. 1: (a) item I) UT; II) MT-UT; III) MT-MT. (b) Mix-zone where three cars with pseudonyms A, B, and C enter a mix-zone
and attend the minimal k=3 and at the exit, receive new pseudonyms (TT4, Y0Z and X32, respectively) without any association
with previous ones, cloaking their identities. (c) GEO-I scenario where the privacy level is proportional to the radius.

TABLE I: Related work about statistical analysis of mobility.

Ref Metric Accuracy Model1 #Datasets Modal Similarity Analysis Similarity Method1 Loc. Privacy

[17] Banknotes AIC 1 people No - No

[18] Trip Displacement AIC 2
walk/run,bike,
train/subway,
car/taxi/bus

No - No

[2] Trip Displacement AIC 3 bus, taxi,
subway partially - No

[19] Trip Displacement, Trip Duration, Trip Interval MLE, BIC 2 taxi, subway No - No

[20] Degree Distribution, Friendship Node, Hashtag AIC, BIC, SSE
Approach proposed 2 OSN No - No

[21]
Yellow Intervals, Driver’s Age, Gender, Phone Status, Maximum Decel./Accel.,
Vehicle’s approaching Speed, Distance between Vehicle’s Position,
Stopping line when yellow light go up.

AIC, BIC 1 car No - No

[22] Distr. of Displacements, Waiting Time AIC 3 people No No

[23] Distance and Transfer Time
between POIs AIC 4 bus, taxi,

subway partially Pearson Corr. No

[24] Srrive-stay-leave, Trajectory Entropy, Number of Trips, Average Velocity,
Trip Length, Total Driving Days, and Average Mileage per Day

MLR, DCNN,
Approach proposed 3 private car, taxi yes

MSE, RMSE,
MAE, KL, R2 No

Our work Stay Point Count (SPC), Stay Point Duration (SPD) AIC, SSE 7

people,
bus, taxi,
private car,
multimodal

Yes Wasserstein Yes

1 AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; MLE: Maximum Likelihood Estimation; SSE: Sum of Squared Estimate of Errors; MLR: Multiple Linear Regression;
DCNN: Deep Convolutional Neural Network; MSE: Mean-square Error; RMSE: Root-mean-square Error; MAE: Mean Absolute Error, KL: Kullback–Leibler divergence; R2: degree-of-fit test
and the closer the R2.

correlations between displacements length and the waiting
time at destination.

There are also studies about understanding place semantics
in mobility [23] and hot zones evolution [24]. Papandrea
et al. [23] noticed that POIs have some statistically similar
properties among individuals. They classified POIs in terms of
their relevance on a per-user basis. Farther, they applied travel
metrics (spatial and temporal distances) to four datasets: trajec-
tory, continuous mobility datasets, and two CDR datasets. The
trajectory dataset is defined as a unique trip with origin and
destiny. In contrast, after starting in the continuous mobility
dataset, the user sampling never stops unless the sample
collector gets switched off, yielding many trips in a trajectory.
The results showed a correlation between these metrics in
trajectory datasets.

Xiao et al. [24] investigated the spatiotemporal evolution of
urban hot zones (a kind of POIs) from stay points behavior
on private cars dataset. They noticed that the hot zones’
formation is intricately related to the spatiotemporal coupling
correlation of stay points, and its spatiotemporal variation
shows certain predictability. Farther, they analyzed mobility
patterns between taxis and private cars with trajectory entropy,
number of trips, average velocity, trip length, total driving
days, and average mileage per day. They concluded that taxis

trip, unliked private cars, are different, irregular, and has a
high degree of randomness.

Despite the vast literature on the statistical analysis of
mobility, few proposals analyze privacy from the perspective
of mobility metrics. Further, there are few studies about
the similarity between different data sources and transport
modes. Alessandretti et al. [22] made an initial analysis of
Pearson’s correlation between the two datasets. Although the
proposal of Papandrea et al. [23] and Xiao et al [24] presented
relevant contributions for human mobility analysis, they did
not compare similarity levels between datasets. Further, to the
best of our knowledge, no previous proposal analyzed these
metrics when characterizing location privacy.

Unlike previous studies, here we advance the state of the art
w.r.t. SPs. We explore the stay points metrics for characterizing
and evaluating the impacts of mobility data on location privacy.
In location privacy, the stay point metrics stand out over the
mobility metrics discussed above. Once mining the SPs, it is
possible to get valuable information about the users’ mobility
profile (e.g., whereabouts and diary routines) and then define
the best placement and configuration of LPPM’s instances,
such as radius, noise level (ε), and k1. For this, we propose
an analytical framework to analyze two SPs metrics extracted

1Minimum of entities into a region for anonymizing.
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from different transport modal datasets (see Section IV).
Table I summarizes the related work discussion.

B. Mobility Effects on Security and Location Privacy

In a smart mobility scenario, people equipped with smart-
phones, vehicles, and things can be seen as mobile devices,
allowing users to access a rich set of mobile services. Nev-
ertheless, these resource-constrained devices need fast and
easy access to mobile services without multiple credentials
of the users. In this way, password-based single-sign-on au-
thentication has been widely applied in mobile environments.
An authentication token is generated on an identity server,
and one can request mobile services from related service
providers without multiple registrations [27]. However, this
model introduces privacy and security threats. For instance,
if an adversary accesses the identity server, one can retrieve
users’ passwords by performing Dictionary guessing attacks
(DGA) and overissue authentication tokens to break the secu-
rity [27], [28].

Other securities and privacy issues occur when cloud ser-
vices provide data deduplication to users equipped with mobile
devices to save storage space. For instance, the user’s data
must be cyphered by a symmetric encryption method like
Message-locked encryption (MLE) to avoid leaking private
information. However, MLE is vulnerable to brute-force DGA.
Additionally, MLE schemes are subject to key management
problems, mainly if users access different devices. Thus, to
mitigate DGA and key management problems, some proposals
have focused on applying secure distributed secret sharing
protocols [28], [29].

In different location privacy studies [14], [15], [16], we
can see evidence about the impact of mobility on privacy
by analyzing the performance discrepancy of an LPPM ap-
plied to different transport modes. For instance, in vehicular
mobility, some proposals showed significant differences in
the re-identification rate between the datasets of buses and
cars of the same city [14]. Additionally, other studies also
found divergences in the re-identification rate in datasets of
different cities, such as datasets of cabs in Rome and buses
in Shanghai [15]. In both studies, datasets were submitted to
LPPMs and configured with the same parameters.

Some investigations have identified privacy divergences of
users registers [16] in datasets, which are not all equal in
the face of re-identification attacks. This means that some
users’ profiles can never be re-identified even in the absence of
LPPMs, while others can be easily re-identified. The authors
argued that this difference in users’ protection level is that no
generic LPPM provides the same protection level for different
users’ profiles. Moreover, the resilience of an LPPM against
re-identification attacks depends on the underlying data. For
instance, the LPPM settings to protect the location data of
a user walking and using his/her smartphone may differ
from those of a user driving a private car due to mobility
characteristics such as speed, direction, and frequency of visits
to places.

One of the reasons for these accuracy differences of re-
identification attacks is that possibly these datasets were
protected by inappropriate or misconfigured LPPMs or with

the static setting, which did not consider the dynamic scenarios
with different transport modes. As a result, we have datasets
with low protection and utility. Next, we emphasize some
essential privacy issues when using classical LPPMs to smart
mobility.

III. LOCATION PRIVACY ISSUES IN SMART MOBILITY

This section shows the classical LPPMs and collection
of issues concerning privacy and mobility aspects addressed
in smart mobility, organized in three scenarios: general,
anonymization, and obfuscation. Nevertheless, we need first
to understand what privacy threats are through an adversary
model.

A. Adversary Model

Defining a consistent adversary model is important to out-
line a location privacy attack’s limits. This model makes it
possible to have a panoramic view of privacy threats and define
more appropriate mitigation actions. Therefore, we present an
adversary model capable of carrying out both anonymized and
obfuscated data attacks.

The adversary model can be defined as follows. Let be F
and G be two functions that represent the LPPMs anonymiza-
tion and obfuscation, respectively. Also, let be D′ an open
dataset D, but protected by F or G, being D′ ← F(D) or
D′ ← G(D). The adversary may also have access to some
training traces (possibly noisy or incomplete) of users and
other public contextual information, represented by a profile
Bu for each user u. The above information applied to D
represents the adversary’s background knowledge about the
users B = (B1, . . . , Bb, . . . , Bm), where [1 ≤ b ≤ m] and
b represents the number of elements in B known by the
adversary, enabling the adversary to execute a Tracking Attack
Z or Points of Interest Attack W , for example.

In a Tracking Attack (TA), the adversary’s objective is to
determine the whole sequence (or a partial subsequence) of
events in a user’s trace. Given an anonymized dataset D′

composed of users and background Bu, a tracking attack is
defined as Tu ← Z(D′, Bu), where Tu represents the re-
constructed trajectory of user u.

A Points of Interest Attack (POIA) uses location points or
regions where people commonly stay at a given instant, such
as home or workplace, to characterize users’ profiles. Given
a set of regions on map R ∈ B, a period of time t, and an
obfuscated dataset D′ composed of users. An adversary can
be interested in discovering the most visited locations Ls of
users s in D′ at time t. That is, Ls ← W(D′, R, t). It is not
needed the exact location, but the region on the map.

We can observe privacy threats through an adversary model,
even if an LPPM protects data D, from adversary’s background
knowledge B, which is the type of LPPM (anonymization F ,
or obfuscation G) applied in D. For example, if the adversary
has B that the D was protected by G. The adversary knows
that users’ sensitive locations have been obfuscated and may
have low success with a POI attack W , but the users’ identity
was not protected. Thus, the adversary can be highly accurate
in identifying the identity of users with tracking attack Z .
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Likewise, if the adversary has B, which D was protected by
F , a POI attack W will have a high accuracy in identifying
the location, as the POIs was not protected. A way to protect
open data is to apply a hybrid LPPM based on anonymity and
obfuscation. However, we encountered issues between privacy
and utility, as defined below.

B. General Scenario

In smart mobility open data, there are issues related to the
decision about the type of privacy to achieve, the order of
applying these approaches, and how to set up the LPPMs to get
an optimal trade-off between obfuscation and anonymization.
However, applying these techniques does not mean achieving
location privacy fully but can be effective for datasets used
for a specific purpose that requires one type of protection
than another. Depending on the systems that use the protected
dataset (called consumers), these issues can affect/change
privacy and utility goals.

Suppose a congestion reduction scenario, where it is nec-
essary to test a system that monitors traffic flow. In the
test dataset, the fine-grained geolocation points are needed
for measuring the traffic efficiently, and a high distortion on
this data may lose its utility. In this case, the test dataset
should consider obfuscation since it is more sensitive than
anonymization. Thus, this dataset should have a high level of
anonymization and a low level of obfuscation. These questions
are described in Fig. 2.

Questions Q1 and Q2, hybrid mechanisms (obfuscation and
anonymization), deal with a new trend for the LPPM design
but, at the same time, pose new challenges. For instance,
hybrid mechanisms are intricately dependent on the context in
which each customer’s family will use the protected dataset.

Question Q3 addresses the issue that there is no one-
size-fits-all LPPM for many privacy scenarios without losing
privacy and utility, such as in datasets MT-UT and MT-MT.
We detail this issue and directions for a possible solution in
the following.

C. Anonymization Scenario

Although there are studies on mix-zones to optimize
anonymization effectiveness, whether in silence period strate-
gies [30], [31], cryptography [32], positioning [33], or mod-
eling of its geometric region [34], few efforts have been
conducted to investigate mix-zones in the context of smart
mobility open data. Specifically, the side effects regarding
privacy and data utility when the LPPM parameters are not
calibrated in an environment with different modals. Here we
have identified some issues about these concerns.

Mix-zones is a technique to anonymize a dataset and, thus,
its protection. It selects urban regions where the simultaneous
anonymization of vehicles (or people) occurs by changing their
current pseudonym [9]. We need to have at least k entities
within the mix-zone (see Fig. 1b) to anonymize them. The
mix-zone parameters are the radius (r), the minimum number
of entities in the mix-zone to change the pseudonym (k), and
the geo-position.

From a spatial point of view, we need to calibrate the mix-
zone radius (r) for different entities considering the trade-off

between privacy and utility. We can gain anonymity coverage
with a larger radius since more entities are likely to be
inside the zone simultaneously. However, within a mix-zone,
there is a period of silence in which location records are
discarded. Therefore, the larger the mix-zones radius, the
greater the data gaps, which might compromise the dataset’s
utility. Additionally, people’s mix-zone radius may be smaller,
as people tend to have a lower speed than vehicles. But, what
are the radii for two different types of entities (like MT-UT
and MT-MT scenarios) within mix-zones?

Other spatial issues are the number and location of mix-
zones on a map, depending on that area’s mobility character-
istics. If high data privacy is desirable or needed, the mix-
zones must be positioned in higher traffic regions [35]. The
positioning of mix-zones over time is a temporal issue that we
need to consider. Once the best positioning for mix-zones is
defined, these points may lose their effectiveness to anonymize
over time. With the flow variation of entities, some mix-zones
may not make sense anymore, whereas other regions may need
them. Thus, the problem is how to define the lifetime of a mix-
zone.

Tuning the parameter k of a mix-zone is also affected by a
given area’s mobility characteristics. In high vehicle traffic or
crowd, it is desirable to have a high value of k. In contrast, a
low-traffic region requires a small value of k, which must be
defined to cover data anonymization and a higher privacy level
significantly. Also, k is decisory for pseudonyms changing.
A k low may yield excessively pseudonyms changing that
implies a high anonymity level. However, this harms open data
once it produces a significant number of sliced trajectories,
losing its utility. Further, in an online context, the excess on
pseudonyms changing can negatively affect communication
protocols (e.g., routing task) and applications that need long-
term communication relationships (e.g., file transfer or inter-
active chat sessions) [30], [31]. Fig. 2 presents a summary of
these anonymization issues.

D. Obfuscation Scenario

An obfuscation scenario also presents many issues concern-
ing privacy and utility. For example, Geo-indistinguishability
(GEO-I) [10] is an obfuscation technique based on data
perturbation. It protects the user’s location by adding spatial
noise extracted from a Laplace distribution to the actual user’s
location in the mobility trace [10]. GEO-I considers the privacy
level l to be proportional to the radius r, and defines an ε-
geo-indistinguishability as ε = l/r. The value of ε represents
a level of privacy for l within r, and proportionally selects a
privacy level for all other radii observing that the lower the
ε, the higher the noise (see Fig. 1c). The GEO-I approach
is necessary to consider the noise level applied to data. If it
is high, one may risk distorting the data by losing its utility.
Nevertheless, if the noise level is low, the data may not be
properly protected to ensure its privacy. Therefore, the noise
level must be adjusted to handle this trade-off.

Another parameter to consider is the GEO-I radius to iden-
tify the user’s POIs and introduce noise. The higher the radius
is, the greater the chance of identifying the POIs of a mobile
entity, but also the greater the noise to be applied to protect
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Fig. 2: Location privacy issues in smart mobility.

the region. Thus, for datasets with multimodal trajectories, the
radii may have different values. The radius to identify the
vehicle’s POIs may differ from that of people’s. People’s POIs
usually have smaller perimeters, such as home, workplace,
tourist point, campus building. In contrast, vehicles’ POIs have
a larger perimeter, such as the airport area for POI of taxis or
a parking yard for car rental. However, what would be the
ideal radius for MT-UT and MT-MT scenarios? Must these
POIs radius/noise levels be varied with time? Fig. 2 presents
a summary of these obfuscation issues.

Based on these facts, we can state the following hypotheses:

Hypothesis 1: Mobility reflects directly on location
privacy.

If we consider Hypothesis 1 valid, which is quite
reasonable, then we have:

Hypothesis 2: Different types of mobility need different
profiles of privacy and utility, independent of the applied
privacy model.

These questions have no trivial answers. However, a possi-
ble direction is to understand how privacy behaves in different
mobility patterns to address Hypotheses 1 and 2. In this work,
we propose analyzing the impacts of mobility on location
privacy by analyzing SPs, as a substrate used in many privacy
algorithms, to identify specific behaviors in different transport
modes. Specifically, we intend to characterize and analyze dis-
tributions extracted from SPs of different datasets and compare
them. The goal is to verify the similarity between distributions
of the same and different transport modes. The similarity level
is expected to be low between different transport modes and
high for the same modes of transportation. In this way, we
highlight the hypothesis. More details are presented below.

2This algorithm is also used for the stay point duration metric. To do this,
replace Line 7 with the function that calculates the stay point duration metric.

Algorithm 1: Characterization and Similarity Analysis
of Stay Points Count metric2.
Data: D = {D1,D1, ...,Dn} set of distinct datasets.
Result: Υ: best fit distribution for each Di ∈ D; S:

similarity matrix; Φ: Accuracy matching of
mobility group;

1 for Di ∈ D do
2 Pi ← Extract SP Param(Di)
3 SPi ← Extract SP (Di, Pi)
4 SP ← SP ∪ SPi

5 end
6 for SPi ∈ SP do
7 SPUi ← Extract SP by User(SPi)
8 SPU ← SPU ∪ SPUi

9 end
10 for SPUi ∈ SPU do
11 distri ← Best F it Distr(SPUi)
12 Υ← Υ ∪ distri
13 end
14 for SPUi ∈ SPU do
15 for SPUj ∈ SPU do
16 S[i, j]←WM(SPUi, SPUj)
17 end
18 end
19 Φ← ACC(S)
20 return Υ, S, Φ

IV. METHODOLOGY

This section presents an analytical framework for analyzing
location privacy with SPs. Firstly, we define the SPs and
their relationship to the LPPMs. Next, we detail the steps
for extraction, characterization, and similarity analysis of stay
points metrics.
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Fig. 3: The framework for analyzing location privacy with stay points.

TABLE II: Datasets details.

Id Name Location Transp. type #users #reg. #Staypoints1

brig Brightkite [36] LBSN human 51,406 4,747,287 2,679,758
gow Gowalla [36] LBSN human 107,092 6,442,892 3,733,344
cabs Cabspotting [37] San Francisco, USA taxi 532 6,837,027 28,589
t-dri T-Drive [38] Beijing, China taxi 10,320 17,652,648 187,183
dubl Dublin Bus [39] Dublin, Ireland bus 911 43,851,182 52,961
rio Rio Bus [37] Rio de Janeiro, Brazil bus 13,954 51,845,217 570,894

geo Geolife [40] Beijing, and 36 cities in China,
USA, South Korea, and Japan. multimodal 182 24,876,978 27,862

geo-car Geolife cars [40] — cars 36 512,807 770
geo-cabs Geolife cabs [40] — taxi 29 242,018 449
geo-bus Geolife bus [40] — bus 43 1,276,632 1679
geo-human Geolife human [40] — human 61 2,535,433 3320

1 Stay points setup SPp〈R = 250, T = 30〉 for brig and gow datasets, SPv〈R = 500, T = 30〉 for cabs, t-dri, dubl,
rio, geo, and geo-* datasets.

TABLE III: Staypoints values from analysis radius and time to stay.

t15 t30
Dataset r100 r200 r250 r300 r400 r500 r100 r200 r250 r300 r400 r500
brig 3050695 2874132 2826407 2753173 2642387 2611167 2882499 2722982 2679758 2612758 2509555 2481030
cabs 31437 31467 31479 31484 31501 31506 28453 28487 28513 28530 28566 28589
geo 37349 37295 37409 37229 37117 37206 28433 27864 27862 27603 27360 27198
gow 4340465 3967355 3894363 3838986 3718058 3620534 4146983 3799599 3733344 3683107 3571545 3480181
t-dri 319472 356156 380332 405721 450533 486246 162470 166066 167868 171871 179502 187183
rio 893318 839561 803565 797655 777507 783632 582907 562466 563038 565332 568527 570894
dubl 93308 96572 98176 98668 102506 104893 51879 52390 52308 52371 52511 52961
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(a) Radius [100-500] and time to stay at least 15 mins.
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(b) Radius [100-500] and time to stay at least 30 mins.

Fig. 4: Stay points extraction with many radius and time to stay time threshold.

A. Analyzing Location Privacy with Stay Points

Stay Point (SP) is a region where an entity stays for a
minimum time interval [11]. The parameters of an SP are the
radius r in meters of the region and the minimum time to stay
there t in minutes. These points are relevant for detecting many
mobility characteristics, such as traffic lights and even traffic

jams. Stay points are commonly used as a substrate for many
privacy mechanisms in the location privacy context. In LPPM
design, stay points are typically used to detect POIs and apply
obfuscation methods. Additionally, stay points can be used
for mix-zones placement [6]. In location attacks, stay point
mining enables to identify and characterize behaviors in the
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Best Distr. brig gow cabs t-dri dubl rio geo

invgamma −207,956 −392,287 −3,218 −54,411 −4,966 −111,489 −430
pearson3 −78,572 −452,154 −3,189 −54,387 −5,406 −112,594 72
fisk −136,175 −416,304 −3,377 −55,407 −5,332 −110,197 122
gennorm −73,731 −321,543 −3,171 −55,626 −5,276 −123,696 −180
johnsonsu −83,889 −421,870 −3,214 −55,570 −5,496 −112,781 −207
burr −114,167 −437,034 −3,167 −55,216 −5,431 −134,550 223
nct −205,646 −387,561 −3,228 −55,435 −5,112 −112,661 −451

(a) Best distribution and AICc(SSE) value for the SPC metric.

(b) Distribution of each dataset and best fit distribution (in red color: probability density function (pdf)), calculated with AICc(SSE).

Fig. 5: Best fit distribution for SPC metric.

users’ trajectory, revealing sensitive information, such as social
preferences, since victims regularly go to those places [6],
[41]. In this way, stay points bring valuable information w.r.t.
location privacy.

Fig. 3 details the steps for analyzing location privacy with
stay points. Step 1, we extract SP from seven different real
mono and multimodal mobility datasets (in which six of them
refer to the case UT and one referring to the cases MT-UT and
MT-MT). Step 2, from each SP set, we extract the distributions
of two SP metrics: SPC and SPD. Step 3, we characterize the
distributions according to the best fit statistic model. Step 4, for
each SP metric, we compare the similarity between datasets’
distributions. Specifically, we verify if there is a divergence
between the distributions, in terms of SPs, for vehicles and
people. Next, we refine the vehicle category for cars, cabs,
and buses. We use an accuracy metric to quantify the number
of distributions that matched each other. The steps are defined
in Algorithm 1 and detailed in the following sections.

B. Extraction of Stay Points

The number of collected SPs. on stay points extraction is
related to their radius and time to stay parameters. Many em-
pirical studies in the literature set up the SP parameters [11],
[42]. For instance, Zheng et al. [11] argued that radius and
time to stay parameters enable finding significant places, such
as restaurants and shopping malls. At once, it is possible
to ignore geo-regions without semantic meaning, like places

where people wait for traffic lights. They extracted 10,354 stay
points from the dataset with 107 users using mobile devices
in Beijing, including 36 cities in China and a few cities in the
USA, South Korea, and Japan. Chen et al. [42] used spatial
density clustering and temporal Gaussian Kernel Density to
extract spatiotemporal features from sparse and non-stationary
stay behavior data. Concerning SP set up parameters, questions
naturally arise: what is these parameters’ setup to obtain
optimal stay points extraction? Is there a setup pattern for
datasets of different natures, such as transport modals?

Here, we analyzed the parameter tuning for the SPs ex-
traction considering various transport modals to answer these
questions (Line 2 of Algorithm 1). The goal is to identify
how tuning the radius and time parameters affects the result
set of SPs in different transport modals collected from seven
datasets (see Section V). We defined a testing scenario of
ranging the radius threshold r from 100 meters to 500 meters
(SR = {100, 200, 250, 300, 400, 500}), and the time threshold
ST from 15 minutes to 30 minutes (ST = {15, 30}). For each
combination of radius r ∈ SR and time value t ∈ ST , we
extracted the set of SPs for all users in each mobility trace
(see Table III). We can see that the settings to extract stay
points for people and vehicles are different.

For the people datasets, the best configuration was the
smallest radius (r100), whereas for the vehicle datasets were
the largest radius (r500). This fact is best seen in Figs. 4a
and 4b that represent the z-score standardization of the stay
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points count in the datasets for all the radius and time values
t15 and t30. For both time configurations, the vehicle datasets
– cabs, t-dri, rio and dubl – got a positive score above value
2, i.e., collected more SPs with r500. The only exception
was the rio dataset, which for t15 prevailed r200. The people
datasets gow, brig and geo prevailed radius r250, r200 and
r100, respectively. Geolife is a multimodal dataset, but most
of its mobility records refer to people, which leads to bias,
with lightning configurations below r250. The SP extraction
results suggest that the transport modal significantly influences
the parameters’ choice to collect a more significant amount
of stay points. Therefore, we adopted two parameters set,
SPp〈R = 250, T = 30〉, SPv〈R = 500, T = 30〉, applied to
human and vehicular datasets, respectively. These stay points
setups are already used in [11] for people datasets and in [42]
for vehicles datasets, as they have contexts close to ours.
Optimal tuning of SPs parameters is context-dependent and
has several open issues [11], [42].

C. Stay Points Metrics

We use the metrics related to the stay points aspects: SPC
per user and SPD (Lines 6–9 of Algorithm 1).

Stay Point Count (SPC) per user refers to the total of
different locations one visits. This metric can be used to
understand the different mobility characteristics of users. Its
distribution contains the locations visited by users in which
some may have only a few places while others may have a
large collection. That can be used for POI extraction, routing
algorithms, and contagion models.

Stay Point Duration (SPD), also called the duration of
stay at a stay point, refers to the time a user spends at
a location. The lower bound is defined by the stay time
algorithm’s parameter, and the upper bound has no limit.
Understanding the time users (or population) spend on average
at a location can be a good indicator of its capacity regarding
data offloading, helping to design handoff solutions.

D. Distributions characterization

The fundamental step for identifying divergences between
transport mode datasets is to characterize the distributions
(dist) obtained from SP metrics (Lines 11–12 of Algorithm 1).
That is, identify a representative model of dist from a set of
candidate models. For this, we calculated the Akaike Infor-
mation Criterion (AIC) from the Sum of squared estimate of
errors (SSE) of each distribution candidate (AIC (SSE))3. AIC
is an estimator of out-of-sample prediction error, widely used
in statistical analysis, that evaluates a collection of models for
the data and estimates the quality of each model w.r.t. the
other models [18], [2], [19], [25]. The lowest value of AIC
will be the best fit distribution for dist. Thus, AIC provides
a means for model selection. Specifically, we use an AIC
correction (AICc) to address potential overfitting for small
sample sizes. SSE is a measure of the discrepancy between
the data and an estimation model. It is used as an optimal
criterion in parameter selection and model selection. A small

3For more details please refer to K. P. Murphy, Machine Learning: A
Probabilistic Perspective. MIT Press, 2012.

SSE indicates a tight fit of the model to the data. AIC works for
samples of different sizes, including non-normal distributions.

E. Analysis of Similarities between Distributions

Statistical distance is the approach we use to identify the
distance between two probability distributions. We applied
the Wasserstein metric (WM), which measures the difference
between two distributions by the optimal cost of rearranging
one distribution into the other4 (Lines 14–18 of Algorithm 1).
The smaller the WM value is, the less effort to transform
one distribution into another, and, consequently, the two dis-
tributions show high similarity (Line 19 of Algorithm 1). The
Wasserstein distance is asymmetric, (weakly) continuous, and
ideal for analyzing corrupted data, in contrast to common
distributions divergence approaches, such as Kullback-Leibler
or Jensen-Shannon [43]. For the WM, we carry out three types
of analysis to identify:
WMA1 similarities of distributions between the two transport

generic types: vehicular and human.
WMA2 similarities between distributions of the same cate-

gory of vehicles. For example, if a taxi distribution is
more similar to the distribution of another taxi than a
distribution of buses or people.

WMA3 similarities between distributions of the same generic
type but extracted from monomodal and multimodal
transport datasets. For instance, if the taxicab dataset
matches a vehicle category from a multimodal dataset,
such as car, cabs, or bus.

V. EXPERIMENTAL RESULTS

We conducted an experimental similarity analysis of differ-
ent transport modes. To do so, we used distributions extracted
from stay points in datasets of different transport modes.
We use SP metrics to extract the distributions, as previously
defined.

We used seven datasets with different transport modes
(see Table II). We analyzed datasets of human and vehicular
mobility and multimodal transport. Additionally, we selected
at least two datasets for each type of vehicle to check for
possible similarities between them. Also, for Geolife, we
analyzed the trajectories of humans, cars, buses and, cabs
categories5 separately.

We evaluated the performance of the WM, in the
task of associating the distributions generated by the stay
points metrics, using the accuracy metric, i.e., Accuracy =
distributions match correctly

total distributions × 100.
For instance, the WMA2 analysis with two datasets’ dis-

tributions for each type of vehicle distinct: cabs, people, and
buses; Totalize six distributions. During the WM matching,
there was a more significant similarity between distributions of
the same type, such as taxis-taxis, and buses-buses, matching
a total of four datasets and providing an accuracy of 67%.

For the characterization of the distributions produced by the
metric SPC for each dataset, we used 89 types of distributions

4For more details, please refer to C. Villani, “Topics in Optimal Transporta-
tion”. American Mathematical Soc., 2003, no. 58

5We used all datasets, except the Rio de Janeiro bus dataset, in which we
used a sampling of 10 days corresponding to 33% of all dataset
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(a) SP count. (b) SP duration. (c) SP count for the categories inside Geolife: human, bus,
car, and cabs.

Fig. 6: Wasserstein distance for SPC and SPD metrics. Analysis with people=r250 and vehicles=r500, both t=30 minutes. The
metrics are grouped by vehicle category: people (p), car (c), and bus (b).

available in the library in Scipy6. Table 5a shows the results of
AIC(SSE), in which the best-fit distribution to the SPC metric
for each dataset7. For example, for the stay points count of
the Cabspotting and Brightkite datasets, the distributions that
obtained the best fit were the fisk and invgamma distributions,
respectively, among the set of distributions.

Fig. 5b shows the distribution of the number of stay points
by users for each dataset. We can see the similarity between
datasets of the same category. For instance, human datasets,
such as Gowalla and Brightkite, tend to be similar. Both
distributions indicate that many users have only one stay
point. The vehicular category, like cabs datasets Cabspotting
and T-Drive, also have similar distributions. Still, they tend
to a normal distribution, in which we observed that many
vehicles show more than one stay point. However, datasets
of different categories, such as human and vehicular, tend
to present divergences, as Brightkite and Rio de Janeiro
Bus. Differences between stay points distributions can affect
LPPMs regarding the number of instances, parameters (radius,
ε, and k), lifetime, and placement. For example, when applying
user-level obfuscation with GEO-I to people and using SP as
a preliminary step, we will have one GEO-I instance per user,
due to the nature of the SP distribution for people, with few
places to obfuscate. In contrast, for vehicles with many SPs
per user, we will have more than one GEO-I instance per user.

Similarity analysis in Fig. 6 shows the Wasserstein distance
of SPC and SPD metrics for the datasets. The WM values in
squares are similarity levels between the pairs of datasets an-
alyzed. Low WM near zero (dark-colored squares) represents
more similarity between the pairs of datasets distributions
than high WM near 0.43 (light-colored squares). The WMA1
analysis for the SPC metric (see Fig. 6a) reaches 100% match
accuracy between distributions of the same mobility group.
Distributions of datasets of the same transport mode tend to be

6For more details, please refer to https://docs.scipy.org/doc/scipy/reference/
stats.html

7We omitted the SPD AICc(SSE) results due to space limitations in this
work.

similar, while distributions of different transport modes tend to
be distant. For example, the dataset pairs (Gowalla, Brightkite)
and (Cabspotting, T-Drive) have WM values of 0.017 and
0.045 (see red arrows i and ii in Fig. 6a). In the meantime,
the WM value for (Brightkite, Dublin) is 0.42 (red arrow iii).
This behavior is also similar to the SPD metric, where it
shows 100% accuracy in matching for distributions of people
and vehicles (Fig 6b). For instance, the WM value of bus
distributions (Dublin, Rio de Janeiro) and people distributions
(Brightkite, Gowalla) is 0.083 and 0.039 (red arrows iv and v
in the figure). In contrast, the WM value for (Rio de Janeiro,
Gowalla) is 0.25 (red arrow vi).

In the WMA2 analysis, for the SPC metric, the distributions
of the same transport modes tend to be similar, while the
distributions of different transport modes tend to distance
themselves. The matching accuracy for distributions of the
same transport mode is 83.3%. Considering taxicabs (Cab-
spotting, T-Drive) distribution, the WM reaches 0.045, while
the people (Brightkite, Gowalla) distribution reaches 0.017
(Fig. 6a). Although Geolife is a multimodal transport dataset,
it is close to people’s transport mode, with a WM value 0.01
for the pairs (Geolife, Gowalla). However, the SPD metric
achieves a matching accuracy of 34% for the same transport
mode. Although there is no direct matching for this metric,
the WM values for distributions of the same transport mode
category are very close, such as (T-Drive, Dublin), (T-Drive,
Rio de Janeiro) pairs, in which both belong to vehicular
mobility (Fig. 6b). There are two reasons why Geolife, a
multimodal dataset, resembles people’s mobility. First, the
data was sensed by users carrying cell phones, different from
vehicles with fixed sensors. Second, 55% of the dataset records
labeled are assigned as people.

Further, we analyzed the association between monomodal
datasets and categories of the multimodal dataset. To do so,
we extracted four datasets from Geolife that represent the
labeled data of people (p:geo human) and vehicles as private
cars, taxis, and buses (c:geo car, c:geo cabs, and b:geo bus,
respectively), totalizing ten datasets. We extracted their SPs,

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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then the SPC metric to analyze their similarities with the WS
distance and verify the accuracy as depicted in Fig. 6c. In this
analysis, for WMA1, the accuracy reaches 70% in classifying
the distributions according to the transport modes (vehicular
and human). For the WMA2, the accuracy is 50%. The Geolife
categories had a more significant similarity, except c:geo car,
which had a considerable similarity with the p:brig and p:gow
datasets.

Concerning WMA3 is 50% accuracy of association between
monomodal and Geolife categories. Additionally, among the
four distributions of monomodal transport (Cabspotting, T-
Drive, Rio de Janeiro, and Dublin datasets), three had a
match with the Geolife vehicle categories, highlighted by
circle yellow in the figure. The bus distributions, such as
Rio de Janeiro and Dublin, were associated with the Geo-
Bus category. Although the T-Drive distribution is associated
with Geo-Human, we can see that it is close to the vehicle
distribution Geo-Bus (highlighted with a blue circle in the
figure), with a difference of 0.01 between WM values.

Based on the analysis of different types of datasets with the
SPC and SPD metrics, we have the following insight:

Independently of granularity level, whether in coarse
(person and vehicle) or fine granularity, such as type of
vehicle (taxi, bus, and person), distributions of the same
mobility type tend to converge to each other. However,
distributions of different types of mobility tend to diverge
from each other.

Indeed, the SPs metrics applied to different transport mode
datasets can be considered a fingerprint for each type of mobil-
ity, containing their inherent characteristics. Therefore, these
fingerprints reflect the context of location privacy approaches,
evidencing Hypotheses 1 and 2. This is especially true in smart
mobility, in which multimodal trajectories can be joined in a
unique trace having an identity from a set of signatures.

VI. A LIGHT AT THE END OF THE TUNNEL

The previous results show strong evidence of the hypothesis:
mobility affects location privacy. The use of classic LPPMs
approaches, such as mix-zone and GEO-I, reveal promising
perspectives for the future of location privacy in smart mo-
bility. Remarkably, we can model the privacy issues about
mix-zone and GEO-I as optimization problems given smart
mobility’s dynamic nature. Hence, it encourages designing
adaptive LPPMs aware of mobility to preserve its subtleties of
privacy and utility. Each LPPM instance must be independent,
including a variation of its parameters. For instance, for mix-
zones, the radius can vary according to the type of vehicle in
it as well as the LPPM instances’ lifetime and positioning also
can be modeled as optimization problems.

A proposal of a privacy framework based on optimization
can be an iterative process composed of LPPM’s tuning,
protection, attack, and testing steps. In the tuning step, the
LPPM’s parameters are tuned according to the transport mode.
In the protection step, the dataset is protected with anonymiza-
tion and/or obfuscation. Attack step, the protected dataset is
submitted to re-identification attacks. The testing step verifies

the privacy and utility levels. If the attack step succeeds, then
the defined parameters are not satisfactory, and thus need to be
tuned again and resubmitted to the attack process. This cycle
is repeated until reaching an acceptable trade-off of privacy
and utility.

VII. CONCLUSION

In this work, we have explored location privacy in smart
mobility. We identified gaps in the privacy approaches, the
anonymization (mix-zones), and obfuscation (GEO-I) in the
context of smart mobility. We have evidenced the hypothesis
that mobility can affect privacy. For this purpose, we carried
out experiments to find similarities in the distributions ex-
tracted from two SP metrics, applied to seven datasets of mono
and multimodal mobility. Specifically, an accuracy metric
was used to quantify the datasets’ distributions that matched
each other. The results showed that the SPC metric reached
100% and 83.3% accuracies for coarser-grained (person and
vehicle) and finer-grained (bus, taxi, and person), respectively.
Additionally, we showed a similarity between distributions of
the same vehicle type for mono and multimodal datasets. We
also showed that vehicles and people have specific patterns
about stay points extraction. The results suggest that privacy
has a high dependence on mobility in different levels of
granularity. To our knowledge, this is the first work that
uses statistical analysis of stay points to observe the mobility
influence on location privacy.

As future work, we plan to extend our work with theo-
retical analysis. Also, we intend to design a mobility-aware
privacy solution based on an optimization technique that
considers both privacy and utility in smart mobility open
data. Furthermore, we plan to add more mobility datasets,
such as private cars, contact patterns, and call details record
datasets. Finally, we intend to explore more stay points with
complex networking and collective mobility metrics to pave
the hypothesis addressed in this work.
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