Paradigmas de Processamento Paralelo na Resolução do Fractal de Mandelbrot

Bruno Pereira dos Santos Dany Sanchez Dominguez

Universidade Estadual de Santa Cruz

Cronograma

Introdução

- Serial vs Processamento Paralelo
 - Processamento Paralelo
 - Resolução de problemas computacionais de grande porte.
 - Engenharias
 - Física Médica
 - Bioinformática
 - Genética
 - » Fontes [Aiping D, 2011] [Alonso P. 2009], [Goddeke D. 2007]
 - Redução de tempo
 - Cluster e Grides
 - Fontes de processamento
 - CPU versus GPU

Processamento Paralelo

- MPI (Message Passing Interface)
 - Utiliza a CPU
 - Memória distribuída
 - Cooperação na realização da tarefa
- OpenMP (Open MultiProcessing)
 - Utiliza CPU multi-processada
 - Memória Compartilhada
 - Vários cores compartilhando memória na cumprimento da tarefa.
- CUDA (Computing Unified Device Architecture)
 - Utiliza a GPU (massivamente paralela)
 - Threads utilizam uma hierarquia de memória para a execução da tarefa.

Processamento Paralelo

Características	MPI	OpenMP
FONTE DE PODER COMPUTACIONAL	CPU	CPU
MEMÓRIA DISTRIBUÍDA	SIM	NÃO
MEMÓRIA COMPARTILHADA	NÃO	SIM

CUDA
GPU
SIM
SIM

Fractal

- São funções recursivas
- São continuas em todo seu domínio, no entanto em nenhum ponto é diferenciavel
- Plotagem manual é impraticável
- Benoît Mandelbrot (1924 2010)
 - $-z = z^2 + c$. Eq. De Pierre Fatou (1878 1929)
 - Primeiro conjunto a ser utilizado plotado por um computador
 - A plotagem em resoluções superiores 1200x1200 são excessivamente letas

Fractal de Mandelbrot

$$z_0 = 0 \tag{1}$$

$$z_{n+1} = z_n^2 + C (2)$$

- Onde z_0 e z_{n+1} são iterações n e n+1 e
- -C = a + bi é a posição de um ponto no plano complexo que se deseja iterar
- Desenvolvendo as partes real e imaginária obtemos:

$$x_{n+1} = x_n^2 - y_n^2 + a \tag{3}$$

$$y_{n+1} = 2x_n y_n + b \tag{4}$$

- Algoritmo
 - Condições de parada
 - ITR é a quantidade de iterações máxima
 - Distância máxima da origem |2|
 - Retorna 0 ou i

```
int conj_mandelbrot(complexo c){
int I = 0; ITR = 255;
float x = 0; y = 0; tmp = 0;
enquanto(x^2 + y^2 < 2^2 & i < ITR){
     tmp = x^2 - y^2 + c.real;
     y = 2 * y * x + c.img;
     i++;
Se (i<ITR) retorne i;
Senão retorne 0;
```

• Imagem produzida.

Resultados obtidos

Configuração da estação de trabalho 1		
Processador	Intel [®] Core i7 CPU 860 2,8GHz	
Memória RAM	8GB	
Placa Aceleradora Gráfica	GPU Nvidia GeForce 9800GT, 112 cores, 512 de RAM, 256bits PCI Express 16x	
Experimentos com as verões	Serial, OpenMP e CUDA	

Configuração da estação de trabalho 2		
Processadores	8 nós Genuine Intel ia-64, modelo Madison com 9M cachê	
Memória RAM	16GB Compartilhada	
Experimentos com a versão	MPI	

Resultados obtidos

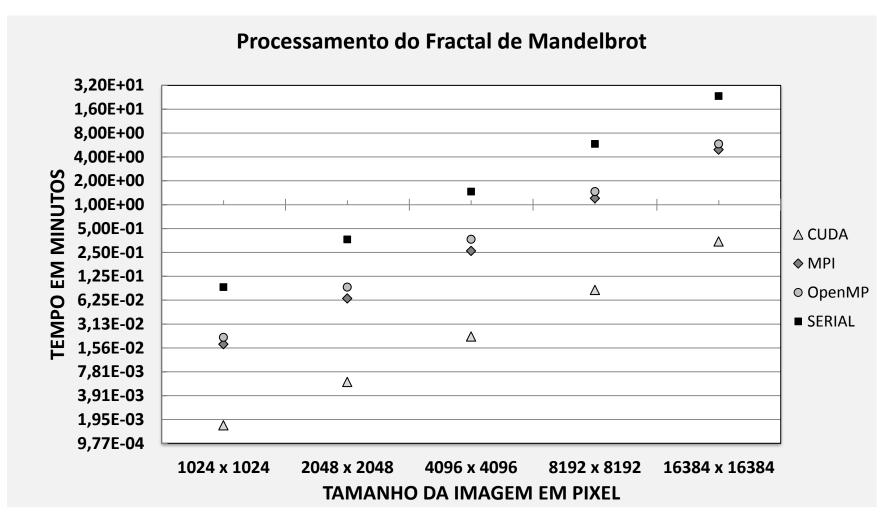


Gráfico 1 – Tempo de processamento das versões e diversos tamanhos de imagem com ITR = 4096.

Resultados obtidos

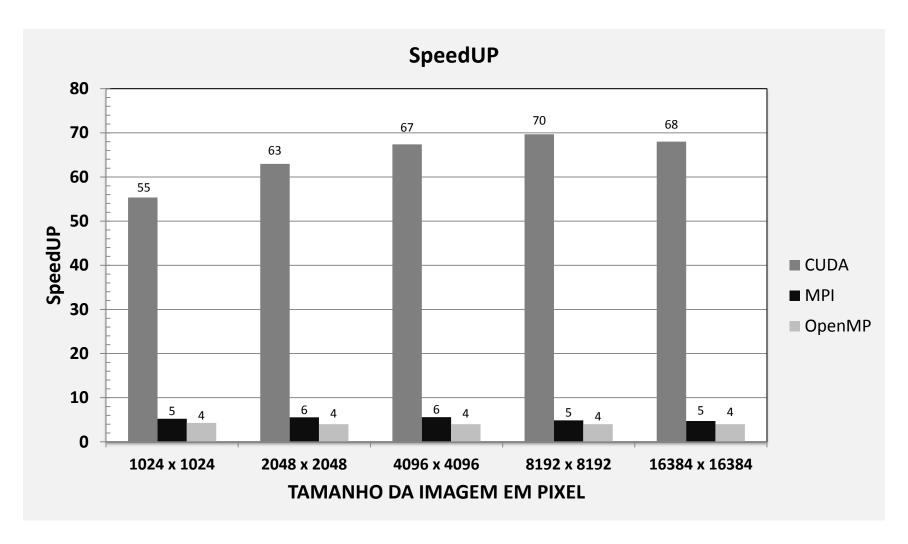


Gráfico 2 – SpeedUP de processamento das versões em diversos tamanhos de imagem.

Conclusões

- Versões paralelas obtiveram melhor resultado na construção do fractal de alta resolução
 - Versão CUDA alcançou melhor tempo de processamento
 - Justificativa
 - Arquitetura com grande quantidade de cores
 - Algoritmo altamente paralelizável (Independência dos dados)
 - Baixa transferência de dados
 - MPI
 - SpeedUP parecido com o da versão OpenMP
 - MPI ficando com melhor speedup quando comparado com OpenMP
 - Justificativa
 - Configuração da estação de trabalho utilizada
 - » Processadores do cluster mais robusto
 - Serial
 - Fica claro que é a versão mais lenta obtendo os maiores tempos de processamento

Conclusões

- Observações sobre técnicas tradicionais (MPI e openMP)
 - Pontos fortes
 - Obtiveram melhor resultado
 - Alto grau de independência dos dados
 - Baixa necessidade de comunicação
 - Sendo boas alternativas a serem exploradas
 - Baixa curva de aprendizado (OpenMP)
 - Pontos fracos
 - Custo do hardware (MPI)
 - Grande espaço e outros recursos auxiliares (MPI)
 - Alta curva de aprendizado (MPI)

Conclusões

- Observações sobre CUDA
 - Pontos fortes
 - A técnica em GPU apesar de recente é altamente poderosa
 - Especialmente em aplicações altamente paralelizáveis
 - Baixa curva de aprendizagem
 - Menor custo e espaço pelo hardware
 - Pontos fracos
 - Necessidade de um hardware habilitado para CUDA
 - Em contrapartida existe padronizações
 - » OpenCL(Open Computing Language)

Trabalhos Futuros

- Melhorar e criar implementações
 - NVIDIA OpenCL Best Practices Guide
 - Versões híbridas
 - OpenMP e MPI
 - OpenMP e CUDA
 - MPI e cuda
 - MPI, OpenMP e CUDA
- Em desenvolvimento
 - Versão paralela em CUDA para o problema de escoamento monofásico de petróleo
 - Fonte: [M. Santos, Dominguez e Orellana 2009]

Dúvidas

