
eXtend Collection Tree Protocol

Bruno P. Santos and Marcos A. M. Vieira, and Luiz F. M. Vieira
Computer Science Department

Universidade Federal de Minas Gerais, Brazil
Email: {bruno.ps, mmvieira, lfvieira}@dcc.ufmg.br

Abstract—In this work, we propose eXtend Collection Tree
Protocol (XCTP), a routing protocol that is an extension of the
Collection Tree Protocol (CTP). CTP is the de-facto standard
collection routing protocol for Wireless Sensor Network (WSN).
CTP creates a routing tree to transfer data from one or more
sensors to a root (sink) node. But, CTP does not create the
reverse path between the root node and sensors nodes. This
reverse path is important, for example, for feedback commands or
acknowledgment packets. XCTP enables communication in both
ways: root to node and node to root. XCTP accomplishes this task
by exploring the CTP control plane packets. XCTP requires low
storage states and very low additional overhead in packets. With
the reverse path, it is possible to implement reliable transport
layer protocols for Wireless Sensor Network (WSN). Thus, we
designed Transport Automatic Piggyback Protocol (TAP2), a
transport protocol with Automatic Repeat-reQuest (ARQ) error-
control on top of XCTP. We implemented these protocols on
TinyOS and evaluated on TOSSIM. We compared XCTP with
CTP, Routing Protocol for low-power and lossy networks (RPL),
and Ad hoc On Demand Distance Vector (AODV) protocols.
We conducted scalability and stress tests, evaluating them with
different loads and number of nodes. Our results shows that
XCTP is more reliable then CTP, delivering 100% of the packets.
XCTP sends fewer control packets than RPL. XCTP is faster to
recovery from network failures and also stores fewer states than
AODV, thus being efficient and agile.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of a
large number of nodes with sensing, computation, and wireless
communication capability. These networks have computing
and communication energy constraints. Many applications in
WSN need to transport large amount of data (image, audio,
video monitoring). These applications are not tolerant to data
loss, thus it is important to provide mechanisms to reliable
collect data.

The WSNs have the following communication paradigms:
many-to-one (data collection), one-to-many (data dissemina-
tion), and a more complex way that enables communication
any-to-any. First two paradigms allow the collection and
dissemination of data respectively. However, with routing on
only one direction, it is infeasible to build reliable mecha-
nisms to ensure the delivery of data end-to-end. Any-to-any
communication paradigm allows communication between any
pair of nodes in the network, but adds more complexity and
also requires large amounts of memory to store all possible
routes.

In this work, we present eXtend Collection Tree Protocol
(XCTP), a routing protocol that is an extension of the Collec-
tion Tree Protocol (CTP). CTP creates a routing tree to transfer
data from one or more sensors nodes to a root (sink) node.
But, CTP does not create the reverse path between the root

node and sensors. This reverse path is important, for example,
for feedback commands or acknowledgment packets. XCTP
enables communication in both ways: root to node and node
to root. XCTP requires low storage of states and very low
additional overhead in packets.

Our main contribution are as follows:

• We propose eXtend Collection Tree Protocol (XCTP),
which allows routing of messages in the reverse direction
of CTP, using a few extra memory to store reverse routes.

• We compare the performance of XCTP, Ad hoc On
Demand Distance Vector (AODV), Routing Protocol for
low-power and lossy networks (RPL), and CTP. In the
experiments, XCTP proved to be more reliable, efficient,
agile, and robust.

• We show that it is possible to implement reliable data
transport protocol over XCTP.

CTP optimizes data traffic towards the root thus achieves
high packet delivery rate. However, our XCTP approach goes
beyond, allowing bi-directional communication between sensor
nodes and the root. XCTP and any-to-any routing protocols
enable reliable communication. However, XCTP reduces the
cost to store routes, since XCTP does not need to maintain
routes to every peer.

Our work is organized as follows. In the next section,
we present some works related to XCTP. In Section III, we
formally define the problem being solved in this work. We
describe XCTP architecture in Section IV. We compare XCTP
with AODV, RPL, CTP, and present the simulation results in
Section V. Finally, we conclude in Section VI.

II. RELATED WORK

Table I. COMPARISON OF COMMUNICATION PARADIGMS.

One-to-Many Many-to-One Any-to-Any
(Dissemination) (Collection) (P2P)

Unreliable Unreliable Reliable Reliable
Directed Diffusion [1] CTP [2] AODV [3], DYMO [4]
(DIP, DRIP, DHV) [5] MultiHopLQI [6] DSR [7], Hydro [8]

Deluge [9] MintRoute [10]
XCTP

RPL [11]

We present in Table I the main related protocols. We
classified them according to the communication paradigm
(any-to-any, many-to-one, one-to-many). Table I shows that
XCTP is, to the best of our knowledge, the only Reliable
Collection protocol. In other words, it is a data collection
protocol that also allows unicast routes root-to-node. Besides
that, it offers an interface that facilitates the development of
reliable end-to-end transport protocols.

From the protocols presented in Table I, Directed Diffu-
sion [1], (DIP, DRIP, DHV) [5] are used for dissemination



of small data packets in the network. DIP, DRIP, DHV
offers eventual consistency models and use timers based on
Trickle [12]. DRIP treats each information as a separated
entity, which allows more control of when and how fast the
data will be disseminated. DIP and DHV treat data as a group,
meaning that control and dissemination parameters are applied
equally for all data.

CTP and Deluge are related protocols. CTP is a data
collection protocol that uses Expected Transmissions (ETX)
metric to estimate the link quality and route cost. Data and
control packets are used to obtain the link quality. XCTP is an
extension of the CTP. Besides creating unicast routes to a data
collection point, XCTP also creates unicast routes from the
root to the sensors. Deluge is a protocol that operates under the
one-to-many paradigm, which has the objective to propagate
large amount of data, as is the case, when reprogramming the
network nodes.

Hydro [8] and RPL [11] are protocols that aim at main-
taining any-to-any communication in WSN. Hydro differs
from our approach, which focus in creating unicast routes to
exchange messages in both directions root-to-node and vice-
versa. Routing Protocol for low-power and lossy networks
(RPL) disseminates Destination Advertisement Object (DAO)
messages to announce routes for each destination. While RPL
requires control packets to create downward routes, XCTP
does not have this overhead since XCTP takes advantage of the
data packets. XCTP also allows non utilized downward routes
to be removed through TTL-based policy, avoiding memory
overhead to store states with peer-to-peer routes that are under-
utilized in WSN.

AODV [3] and Dynamic Source Routing (DSR) [7] are
on-demand routing protocols for any-to-any communication.
AODV floods the network with messages RREQ to build a
path till the destination. On the other hand, DSR protocol uses
the packet header to store the route path. Unlike DSR, our
protocol does not store any routing information in the packet
header. AODV protocol has some similarity with XCTP in the
strategy of storing the reverse path. However XCTP, unlike
AODV, does not save routes that are not reverse among the
sensor nodes and the base station. Dymo [4] is the AODV
successor, however it is optimized for MANETs.

None of the protocols here related allow sending unicast
messages in root-to-node direction and vice versa, except those
any-to-any protocols that require large amount of information
to be stored or control messages.

III. PROBLEM

The data delivery reliability is one of the most challenging
problems in WSN, due to frequent link instability in fractions
of a seconds, many times in less than 1s [13]. Therefore,
it brings basic requirements that are fundamental for any
routing protocol for low-power and lossy networks (L2Ns):
1) reliability, it should deliver the largest possible amount
of packets, when there is route between the participants
communication; 2) robustness, the protocol should operate in
different topologies, loads, amount of sensor nodes and in the
presence of failures; 3) efficiency, the protocol must deliver
packets with the least amount of transmissions, save energy
and keep the least amount of possible states.

Figure 1. XCTP architecture.

An alternative to collecting data in a reliable, robust and
efficiently mode is using XCTP. This protocol balances the
compromises imposed by the three fundamental goals of WSN.
XCTP adjusts the communication model for data collection to
provide routes that enable feedback commands, confirmation
messages or control messages to be exchanged in bi-directional
form between any sensor node and the base station. XCTP
allows data transport protocols with confirmation be built.
Thus, XCTP enables reliable data deliver.

IV. SOLUTION

A. XCTP Architecture

Here, we describe XCTP architecture. To accomplish the
task of forwarding packets also in the reverse direction of the
standard CTP data flow, we had to modify CTP architecture
by adding new features to the protocol rules as well as
incrementing the packet format. We did a minor modification
in the data packet by adding a new field. We also created a
reverse flow table. The protocol rules were modified at the
control and data planes. The data plane was changed to query
the reverse flow table. The control plane is responsible for the
construction and modification of this table. The control plane
was modified to manipulate the reverse fluxes and also to react
appropriately to the two main events:

1) Reverse flow: correct and efficient installation of the
reverse flow rules;

2) Topological changes: nodes must appropriately react
when loops occur or when CTP unicast routes change.

In Figure 1, we show the relationships between modules.
Major changes are highlighted in gray. The Router module is
responsible for filling the Forward and Reverse tables. These
tables indicate what is the next hop for the data packet to be
transmitted. We did not modify the Link Estimator module.
This module estimates the quality of the links to the neighbor-
ing nodes. The quality of the links are estimated using beacons
and data packets. The Forward module queries the Forward
and Reverse tables, and determines any router inconsistencies
to inform the Router module. It also keeps a packet queue for
transmission and check for duplicate packets. The Link Layer
module contains the features used in radio communication.
Finally, the Upper Layer module is the interface provided to
implement components that utilizes XCTP.

B. Changes in data packet

To allow the navigation of the reverse data packet, we
added a 16 bits packet field to the data packet to represent
the address of the message destination. Figure 2(a) shows



the new data packet format. The packet fields are: P allows
node to request routing information to other nodes; C indicates
congestion notification; Time Has Live (THL) each node, when
receiving a packet, increments this field; ETX routing metric
for routes construction and loop detection; origin address of the
source node; destination address of the destination node; seq.
num. sequence number; collect ID collection tree identifier;
Payload packet data content.

We also created an Acknowledgment (ACK) packet. The
ACK packet has a subset of the data packet fields, as illustrated
in Figure 2(b). The New Features field 16 bits is reserved for
future features. The ACK packet is useful as feedback message
for end-to-end transport layer implemented over XCTP.

(a) Data packet with new desti-
nation address field.

(b) Acknowledgment Packet.

Figure 2. Packet formats for XCTP protocol.

C. Reverse Flow

The control plane is responsible for the manipulation of the
XCTP reverse table. The reverse table has the following fields:
addr dest: XCTP tree descendant (but not 1-hop neighbor);
next hop: neighbor address to reach destination; TTL: route
time to live, where we can apply removing policies. The
Router module implements the basic operations Creation,
Read, Update, and Delete over the reverse table.

1) Creation: The table starts empty. When a sensor node
forwards a message to the root, the reverse route is installed.
Since the link estimator module stores information about the
1-hop node neighbors, the router module does not insert entries
in the reverse table of 1-hop neighbors. Figure 3(a) illustrates
this situation: where node C sends data to the root, the
intermediate node (that is not a 1-hop neighbor of C) intercepts
the packet from source C and install a reverse flow.

2) Read: Router module provides an interface to query the
table. This mechanism is used for data and control planes. In
Section IV-E, we provide details of using this interface.

3) Update e Delete: Router module provides mechanisms
for updating and removing installed rules. These functions are
called when there is a topology change (see Section IV-D).

There is a trade-off between agility and efficiency regarding
the maintenance of routes in L2Ns. Agility refers to how
fast the network can react to a topological change, while
efficiency is the energy consumption and the number of packets
sent to keep the network operational. The network requires
high frequency of the beacons to keep routes updated. This
increases the agility of the network but, on the the hand, it
reduces efficiency. CTP uses the Trickle algorithm [12] to
increase the number of beacons when the network is unstable
and exponentially reduces the number of beacons when the
network is stable, thus keeping a trade-off balance between
speed and efficiency. XCTP uses the data packets to create the
reverse route, thus, there is no need for extra beacons.

Algorithm 1 Internal operation sendTo() interface.
1: if isDataXCTP (pkt) or isAckXCTP (pkt) then
2: if pkt.destination = my.addr then
3: // Process package locally.
4: else if pkt.nextHop = nextHop(pkt.dest) then
5: // Send unicast message to neighbor in reverse flow.
6: else
7: // Drop pkt or forwards to the base station.
8: end if
9: else

10: // Normally forwards packets through tree XCTP.
11: pkt.nextHop = nexHop()
12: forward(pkt)
13: end if

D. Topology Changes

A routing system must know when and where to change
the reverse routes of the data plane so it can correctly react
to the network topology dynamics. XCTP control plane reacts
and changes the data plane for reverse routes when there is
the occurrence of loops or link failures.

To maintain the consistency of routes, each sensor node
keeps the estimated route cost to the base station. Moreover,
this information is attached to the control and data packets (see
Figure 2(a)). XCTP uses ETX as the metric cost. The route
cost is always increasing towards the leaf nodes of the routing
tree and this invariant must always be maintained. Loops are
detected when this invariant is broken. In this case, the reverse
flow table entry is removed.

Figures 3(a) and 3(b) illustrate this situation. In Figure 3(a),
we show the initial flow table. Then, as shown in Figure 3(b),
there is a link failure which causes a loop between nodes A,
B, and D. In the event of a loop, the data plane marks, in
the reverse flow table, the sensor nodes that were descendants
and now are parents in the routing tree. Therefore, the action
taken when loops are detected by XCTP data plane is to signal
the control plane for the loop detection so that the appropriate
reverse flow table entries are cleared. The reverse flow entries
are reconstructed when there are new data packets in the
network.

In case of link exchanges due to the dynamics of link
quality, the control plane must update the data plane reverse
flow entries to reflect this new routing tree configuration. The
reverse flow table is updated when a data packet from an
already installed flow is intercepted but it was routed through
a different neighbor. Figures 3(c) and 3(d) illustrate this case.
Data packets from node D towards the root was forwarded
by node B and changed to be forwarded by node C due to
changes in link quality. Thus, the data plane of node A must
be updated to reflect this new configuration: the reverse flow
should be forwarded by node C.

E. API

Here, we describe the XCTP Application Programming In-
terface (API). The CTP protocol does not require a destination
address. XCTP, on the other hand, needs a destination address
to provide unicast routing to a specific sensor node. XCTP
integrates an interface that includes the destination address



(a) XCTP routing tree with
reverse flow table.

(b) Reverse flow table is out-
dated due to routing loop.

(c) Reverse flow table before
link update.

(d) Updating reverse flow rule.

Figure 3. Control plane reactions over the data plane rules when detecting a routing loop and updating the routing paths.

as well as routines for handling and the reverse and forward
tables. The routines are:

• addr sendTo(target, pkt): where target is the destination
address of XCTP pkt packet.

• addr nextHop(target): where target is an optional pa-
rameter. If target is instantiated, nextHop(target) routine
queries the Reverse Table, otherwise the message is
towards the base station.

• loopDetect(): this routine signals the control plane when
a loop is detected (see Section IV-D).

• snoopNewPkt(pkt): when intercepting a data packet
from a new flow, the control plane must signal to update
the reverse and forward tables.

Thus, the interface sendTo(idNode,pkt) should be used
when the base station needs to send a packet to a specific
node.

Algorithm 1 describes this routine. On line 1, we check
if it is a data or acknowledgment packet because only these
two packet types should travel on the reverse path. Then, the
destination address is extracted. If the destination is the node
itself (line 2), the packet has reached its destination and it
should be properly processed. If the destination is one of its
descendants (line 4), the packet is forwarded. Otherwise the
recipient is not in any of the routing tables. In this case, there
are two approaches: discard the packet or forward the packet
to the base station (line 7). In the second case, since the root
knows the entire network topology, the root can forward the
packet or just discard it. If the packet does not have a valid
address, XCTP routes the messages directly to the root (lines
10-12).

XCTP permits the any-to-any communication paradigm.
This is possible due to how the the reverse route is constructed
(line 7 of Algorithm 1). If a node X wants to directly connected
to a node Y, node X can use the routine sendTo(Y, pkt). Node
Y will receive the message from an ancestral of node X or, in
the worst case, the message will go to the root and towards
node Y.

F. Transport layer over XCTP

Using XCTP API, we implemented a reliable transport pro-
tocol, called Transport Automatic Piggyback Protocol (TAP2).
TAP2 uses piggyback and Automatic Repeat-reQuest (ARQ)
error-control mechanism for packet retransmission. Other
transport protocols for WSN such as [14], [15], [16] can also be
implemented over XCTP. However, the requirement of a few

computing resources and its simplistic implementation were
reasons why we chose this approach in our work.

V. EVALUATION

In this section we analyze XCTP and compare it with
three protocols: CTP, RPL, and AODV. The objective of this
analysis is to show that the protocol is working properly, as
well as to evaluate XCTP performance when compared with
the current state-of-the-art protocols. We analyzed according
to the following items: 1) favoring the construction of data
transport protocols; 2) robustness in the presence of faults in
different topologies; 3) scalability. 4) control traffic.

A. Simulation

Of the protocols shown in Table I, Directed Diffusion [1],
Deluge [9], (DIP, DRIP, DHV) [5] are used just for data
dissemination in the network and do not serve to compared
with XCTP. Collection Tree Protocol (CTP) [2] is one of
the newest protocols and it presents better results than Mul-
tiHopLQI [6] and MintRoute [10] in data collection. To the
best of our knowledge, there are no stable and open source
implementations to the community of Dymo [4], DSR [7] and
Hydro [8]. Therefore, we made comparisons with RPL [11],
AODV [3], and CTP.

XCTP, CTP, and AODV were implemented in the
TinyOS [5]. We adopted RPL Contiki [17] implementation.
We also performed experiments with Tymo, a TinyOS version
of protocol Dymo. However, Tymo implementation did not
show to be stable as reported in [18].

Table II. SIMULATION PARAMETERS

Parameter Value
Base station 1 center
Number of sensors 100
Radio range (m) 100
Density (nodes/m2) 10
Number of experiments 100
Bytes transmitted 1024
Path Loss Exponent 4.7
Power decay (dB) 55.4
Shadowing Std Dev (dB) 3.2

We run the experiments on the simulator for L2Ns
TOSSIM [19]. We consider the base station to be a PC without
memory restrictions and which can hold information about
the entire network topology. we used the LinkLayerModel



CTP AODV+TAP2 XCTP+TAP2 RPL+TAP2

96.5% 100.0% 100.0% 100.0%

Delivery for a file 512KB

Figure 4. Transferring a 512KB file to a node 5 hops away from the root.

tool from TinyOS to generate the topology and connectivity
model. We consider 10 different topologies. In each scenario
were runs 10 simulations, totaling 100 runs. In the graphs
presented, the curve represents the average and the error bars
is the confidence interval of 95%. Table II presents the default
simulation parameters.

B. Simulation Results

Figure 4 shows the percentage of delivery of a file of size
512KB sent from the root to a sensor node 5 hops away.
XCTP+TAP2, AODV+TAP2, and RPL+TAP2 reach 100% of
data delivery, because they allow feedbacks to be sent from
data received between the two involved in the communication.
We observed that CTP can transfer only 96.5% of the 512KB,
because it is not possible to request lost data or confirm
received messages, since there are routes only towards the
root. The impossibility of requesting the remaining fragments
results in malfunctioning the application that is intolerant to
data loss. We conclude that XCTP, AODV, and RPL favor the
development of data transport protocols, providing routes that
allow feedback messages to be exchanged among sensor nodes
and the base station.

1) Robustness: To evaluate XCTP in terms of robustness,
we elaborated experiments with different amounts of active
flows (nodes transmitting data to root) and inserted network
failures.

0 10 20 30 40 50 60
Time (s)

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
co

m
p
le

te
d
 d

a
ta

 f
lo

w
 (

%
)

25% turned off motes

AODV

XCTP

Figure 5. XCTP and AODV reactions in the occurrence of network failures.

Initially we compared XCTP and AODV with respect
to the reaction in the presence of network failures. In this
scenario, 5 sensor nodes transfer, each one, 1KB of data to
root reliably and after 10s from the beginning of transmission
we disable 25% of the network, without creating disconnected
components in the network. Figure 5 shows in y-axis the
percentage of flows that have completed the transfer of 1KB
of data, the x-axis shows the elapsed time. In the first seconds
of the simulation the two approaches are similar, being XCTP
a little faster due to proactive construction of routes. After the
shutdown of part of the network at 10s, XCTP reacts quickly

50 70 90 110 130
Time (s)

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
co

m
p
le

te
d
 d

a
ta

 f
lo

w
 (

%
)

25% turned off motes

XCTP no network failures

XCTP responds to faults

Figure 6. XCTP reaction in the presence of failures. 50 flows are active.

finding new routes to the root, the 5 sensor nodes operating
with XCTP complete the transfer in approximately 25s. AODV
reacts slowly to topological change. AODV on average takes
60s to complete all data transfers, in some scenarios, AODV
took over 200s to finish.

The experiment #2 has 50 active flows with the root.
After 10s, we shut down 25% of the nodes. Figure 6 shows
XCTP behavior with and without failures in the network,
in the picture are displayed the percentage of sensor nodes
that concluded the data transfer per time. XCTP, even after
the partial shutdown, quickly rebuild routes to the root and
continues to transfer data. With average 2 minutes of sim-
ulation, all nodes end the data transfer. XCTP presents low
difference of the behavior with and without network failures.
This shows that XCTP is agile even in presence of faults and
with many concurrent flows in the network. AODV is not
shown in Figure 6 because it can not operate with more than
5 flows.

XCTP AODV RPL
0

20

40

60

80

100

U
sa

g
e
 o

f 
ta

b
le

 e
n
tr

ie
s 

(%
) 1 flows

2 flows

3 flows

4 flows

5 flows

Figure 7. Memory consumption of the routing table per number of flows for
the XCTP, RPL and AODV.

2) Scalability: To show that XCTP is scalable, we com-
pared the size of XCTP, AODV, and RPL routing table. We
did not compare with CTP because CTP table has constant
size and stores only the next hop towards the root. Figure 7
shows the comparison between XCTP, AODV, and RPL in the
use of routing tables varying the number of flows. We notice
that with 5 flows AODV consume 100% of the routing table.
When many flows coexist and the routing table is full, AODV
is obliged to dismiss requests for new routes. Thus, AODV
needs to wait for timeouts from old routes to expire so that
new routes can be installed, which results in high reaction time
for network fault and it prevents higher number of concurrent
flows. Unlike AODV, XCTP consumes approximately 82%
less from the table than AODV for the same amount of flows.
RPL always installs all possible reverse routes, independent of



100 200 300 400 500
Number of nodes

 XCTP

0

20

40

60

80

100

U
sa

g
e
 o

f 
ta

b
le

 e
n
tr

ie
s 

(%
) 10 flows

20 flows

30 flows

40 flows

50 flows

Figure 8. XCTP Reverse table use by varying the number of flows and sensor
nodes in the network.

traffic demand. Some intermediate nodes will not be able to
store all downward routes, thus, causing disconnection between
some routes. Unlike RPL, XCTP attempts solve this problem
with TTL-based policy over under-utilized routes and only
stores reverse routes on demand.

Figure 8 shows that XCTP is robust and scalable. XCTP
operates under the Reverse Table limit for different number
of concurrent flows, with different topologies and amounts of
sensor nodes in the network.

3) Control Traffic Overhead: Figure 9 presents the control
traffic from five-hours experiments. XCTP and RPL control
traffic are high at network start up, but they decrease and
stabilize over time. XCTP sends fewer control packet than
RPL because XCTP does not send additional beacons to build
reverse routes.

0 60 120 180 240 300
Time (mins)

50

100

150

200

250

300

T
o
ta

l 
n
u
m

b
e
r 

o
f 

b
e
a
co

n
s 

/ 
n
o
d
e

0.2 beacons/mins

0.9 beacons/minsRPL

XCTP

Figure 9. XCTP requires fewer control packets than RPL.

4) Memory Consumption: Table III presents the RAM and
ROM footprint sizes of the components in our protocol stack
with and without TAP2. XCTP adds little more than 1KB of
code to CTP, requiring smaller amounts of RAM than when
compared with AODV. Regarding the protocols in conjunction
with TAP2, XCTP consumes less RAM than AODV.

Table III. CODE AND MEMORY FOOTPRINT IN BYTES.

CTP RPL XCTP XCTP+TAP2 AODV AODV+TAP2
RAM 1505 6516 1812 1968 2119 2545
ROM 16204 46454 17942 18435 13868 14562

VI. CONCLUSION

We present XCTP, a reliable, robust, scalable, and efficient
protocol for WSN. XCTP solves the problem of reliable
data collection, extending the de-facto standard collection

routing protocol CTP. XCTP allows bi-directional exchange
of messages between a node and base station, extending the
range of previously impossible applications with the CTP.
For example, we show that XCTP favors the construction of
transport protocols (TAP2), unlike CTP. In our experiments,
XCTP reduces the number of states stored comparatively with
AODV and RPL. XCTP is robust in the presence of network
failures than AODV. Besides XCTP sends fewer control packet
than RPL. This indicates that XCTP is an alternative for
applications in L2Ns that are intolerant to data loss.

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and
F. Silva, “Directed diffusion for wireless sensor networking,” Network-
ing, IEEE/ACM Transactions, 2003.

[2] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Col-
lection tree protocol,” in Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, November 2009.

[3] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Mobile Computing Systems and Applications, 1999. Pro-
ceedings. WMCSA’99. Second IEEE Workshop on, 1999.

[4] “Dynamic manet on-demand (aodvv2) routing draft-ietf-manet-dymo-
26.” http://tools.ietf.org/html/draft-ietf-manet-dymo-26, 2013.

[5] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “Tinyos: An operating
system for sensor networks,” in Ambient intelligence. Springer, 2005.

[6] “MultiHopLQI.” http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/, 2014.
[7] D. Johnson, Y. Hu, D. Maltz et al., “The dynamic source routing

protocol for mobile ad hoc networks,” RFC 4728, Tech. Rep., 2007.
[8] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, “Hydro: A hybrid

routing protocol for low-power and lossy networks,” in Smart Grid
Communications (SmartGridComm). IEEE, 2010.

[9] A. Chlipala, J. Hui, and G. Tolle, “Deluge: data dissemination for
network reprogramming at scale,” University of California, Berkeley,
2004.

[10] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” in Proceedings of the
1st International Conference on Embedded Networked Sensor Systems.
ACM, 2003.

[11] T. Winter, “Rpl: Ipv6 routing protocol for low-power and lossy net-
works,” 2012.

[12] P. A. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self regulating
algorithm for code propagation and maintenance in wireless sensor
networks. Computer Science Division, University of California, 2003.

[13] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The β-
factor: measuring wireless link burstiness,” in Proceedings of the 6th
ACM conference on Embedded network sensor systems. ACM, 2008.

[14] J. Paek and R. Govindan, “Rcrt: Rate-controlled reliable transport for
wireless sensor networks,” in Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems. ACM, 2007.

[15] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica, “Flush: A reliable bulk transport protocol for
multihop wireless networks,” in Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems. ACM, 2007.

[16] X.-S. Wang, Y.-Z. Zhan, and L. min Wang, “Stcp: Secure topology con-
trol protocol for wireless sensor networks based on hexagonal mesh,”
in Wireless Communications, Networking and Mobile Computing, 2008.
WiCOM ’08. 4th International Conference on, 2008.

[17] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,” in Local
Computer Networks, 29th IEEE International Conference, 2004.

[18] “”TYMO: DYMO on TinyOS.”,” http://tinyos.stanford.edu/tinyos-wiki/
index.php/Tymo, 2008.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems.
ACM, 2003.


