Matrix: Multihop Address allocation and dynamic any-To-any Routing for 6LoWPAN

Bruna Peres®*, Bruno P. Santos?, Otavio A. de O. Souza?, Olga Goussevskaia?, Marcos A. M. Vieira?, Luiz F. M. Vieira?,
Antonio A. F. Loureiro?®

“Department of Computer Science, Universidade Federal de Minas Gerais (UFMG)
Av. Antonio Carlos 6627, Belo Horizonte, MG, Brazil.

Abstract

Standard routing protocols for IPv6 over Low power Wireless Personal Area Networks (6LOWPAN) are mainly designed for data
collection applications and work by establishing a tree-based network topology, enables packets to be sent upwards, from the leaves
to the root, adapting to dynamics of low-power communication links. In this work, we propose Matrix, a platform-independent
routing protocol that utilizes the existing tree structure of the network to enable reliable and efficient any-to-any data traffic in
6LoWPAN. Matrix uses hierarchical IPv6 address assignment to optimize routing table size while preserving bidirectional routing.
Moreover, it uses a local broadcast mechanism to forward messages to the right subtree when a persistent node or link failures
occur. We implemented Matrix on TinyOS and evaluated its performance both analytically and through simulations on TOSSIM.
Our results showed that the proposed protocol is superior to available protocols for 6LoOWPAN when it comes to any-to-any data

communication, concerning reliability, message efficiency, and memory footprint.

Keywords: 6LoWPAN, IPv6, CTP, RPL, any-to-any routing, fault tolerance

1. Introduction

IPv6 over Low-power Wireless Personal Area Networks (6LoW-

PANEI) is a working group inspired by the idea that even the
smallest low-power devices should be able to run the Internet
Protocol to become part of the Internet of Things. The main
function of a low-power wireless network is usually some sort
of data collection. Applications based on data collection are
plentiful, examples include environment monitoring [1]], field
surveillance [2], and scientific observation [3]. In order to per-
form data collection, a cycle-free graph structure is typically
maintained and a convergecast is implemented on this network
topology. Many operating systems for sensor nodes (e.g. Tiny
OS [4] and Contiki OS [5]) implement mechanisms (e.g. Col-
lection Tree Protocol (CTP) [6] or the [Pv6 Routing Protocol for
Low-Power and Lossy Networks (RPL) [7]) to maintain cycle-
free network topologies to support data-collection applications.

In some situations, however, data flow in the opposite direc-
tion — from the root, or the border router, towards the leaves
becomes necessary. These situations might arise in network
configuration routines, specific data queries, or applications that
require reliable data transmissions with acknowledgments. Stan-
dard routing protocols for low-power wireless networks, such
as CTP (Collection Tree Protocol [6]]) and RPL (IPv6 Routing

*Corresponding author
Email addresses: bperes@dcc.ufmg.br (Bruna Peres),

bruno.ps@dcc.ufmg.br (Bruno P. Santos), oaugusto@dcc.ufmg.br
(Otavio A. de O. Souza), olga@dcc.ufmg.br (Olga Goussevskaia),
mmvieira@dcc.ufmg.br (Marcos A. M. Vieira), 1fvieira@dcc.ufmg.br
(Luiz F. M. Vieira), loureiro@dcc.ufmg.br (Antonio A. F. Loureiro)

'We use the acronym 6LoWPAN to refer to Low power Wireless Personal
Area Networks that use IPv6

Preprint submitted to Computer Networks

Protocol for Low-Power and Lossy Networks [7]), have two
distinctive characteristics: communication devices use unstruc-
tured IPv6 addresses that do not reflect the topology of the net-
work (typically derived from their MAC addresses), and routing
lacks support for any-to-any communication since it is based on
distributed collection tree structures focused on bottom-up data
flows (from the leaves to the root).

The specification of RPL defines two modes of operation for
top-down data flows: the non-storing mode, which uses source
routing, and the storing mode, in which each node maintains a
routing table for all possible destinations. This requires O(n)
space (where n is the total number of nodes), which is unfea-
sible for memory-constrained devices. Our experiments show
that in random topologies with one hundred nodes, with no link
or node failures, RPL succeeds to deliver less than 20% of top-
down messages sent by the root (see Figure|[8).

Some works have addressed this problem from different per-
spectives [8), 9, [10]. CBFR [8] is a routing scheme that builds
upon collection protocols to enable point-to-point communica-
tion. Each node in the collection tree stores the addresses of
its direct and indirect child nodes using Bloom filters to save
memory space. ORPL [9] also uses bloom filters and brings
opportunistic routing to RPL to decrease control traffic over-
load. Both protocols suffer from false positives problem, which
arises from the use of Bloom filters. Even though CTP does not
support any-to-any traffic, XCTP [10], an extension of this pro-
tocol, uses opportunistic and reverse-path routing to enable bi-
directional communication in CTP. XCTP is efficient in terms
of message overload, but exhibits the problem of high memory
footprint.

In this work, we build upon the idea of using hierarchical

February 2, 2018

IPv6 address allocation that explores cycle-free network struc-
tures and propose Matrix, a routing scheme for dynamic net-

work topologies and fault-tolerant any-to-any data flows in 6LoW-

PAN. Matrix assumes that there is an underlying collection tree
topology (provided by CTP or RPL, for instance), in which
nodes have static locations, i.e., are not mobile, and links are
dynamic, i.e., nodes might choose different parents according to
link quality dynamics. Therefore, Matrix is an overlay protocol
that allows any low-power wireless routing protocol to become
part of the Internet of Things. Matrix uses only one-hop infor-
mation in the routing tables, which makes the protocol scalable
to extensive networks. In addition, Matrix implements a local
broadcast mechanism to forward messages to the right subtree
when node or link failures occur. Local broadcast is activated
by a node when it fails to forward a message to the next hop
(subtree) in the address hierarchy.

After the network has been initialized and all nodes have
received an IPv6 address range, three simultaneous distributed
trees are maintained by all nodes: the collection tree (Ctree), the
IPv6 address tree (IPtree), and the reverse collection tree (RC-
tree). The Ctree is built and maintained by a collection protocol
(in our case, CTP). It is a minimum cost tree to nodes that adver-
tise themselves as tree roots. The IPtree is built by Matrix over
the first stable version of the Ctree in the reverse direction, i.e.,
nodes in the Ctree receive an hierarchical IPv6 address from
root to leaves, originating a static structure. Since the Ctree is
dynamic, i.e., links might change due to link qualities, at some
point in the execution the IPtree no longer corresponds to the
reverse Ctree. Therefore, the RCtree is created to reflect the
dynamics of the collection tree in the reverse direction.

Initially, any-to-any packet forwarding is performed using
Ctree for bottom-up, and IPtree for top-down data flows. When-
ever a node or link fails or Ctree changes, the new link is added
in the reverse direction into RCtree, and it remains as long
as this topology change persists. Top-down data packets are
then forwarded from IPtree to RCtree via a local broadcast.
Whenever a node receives a local-broadcast message, it checks
whether it knows the subtree of the destination IPv6 address: if
yes then the node forwards the packet to the right subtree via
RCtree and the packet continues its path in the IPtree until the
final destination.

We evaluated the proposed protocol both analytically and
by simulation. Even though Matrix is platform-independent,
we implemented it as a subroutine of CTP on TinyOS and con-
ducted simulations on TOSSIM. Matrix’s memory footprint at
each node is O(k), where k is the number of children at any
given moment in time, in contrast to O(n) of RPL, where 7 is
the size of the subtree rooted at each routing node. Furthermore,
we show that the probability of a message to be forwarded to
the destination node is high, even if a link or node fails, as
long as there is a valid path, due to the geometric properties of
wireless networks. Simulation results show that, when it comes
to any-to-any communication, Matrix presents significant gains
in terms of reliability (high any-to-any message delivery) and
scalability (presenting a constant, as opposed to linear, mem-
ory complexity at each node) at a moderate cost of additional
control messages, when compared to other state-of-the-art pro-

tocols, such as XCTP and RPL. In addition, when compared to
our any-to-any routing scheme, the reverse-path routing is more
efficient in terms of control traffic. However, the performance of
XCTP is highly dependent on the number of data flows, and can
be highly degraded when the application requires more flows or
the top-down messages are delayed.

To sum up, Matrix achieves the following essential goals
that motivated our work:

e Any-to-any routing: Matrix enables end-to-end connec-
tivity between hosts located within or outside the 6LoW-
PAN.

o Memory efficiency: Matrix uses compact routing tables
and, therefore, is scalable to extensive networks and does
not depend on the number of flows in the network.

o Reliability: Matrix achieves 99% delivery without end-
to-end mechanisms, and delivers > 90% of end-to-end

packets when a route exists under challenging network
conditions.

o Communication efficiency: Matrix uses adaptive bea-
coning based on Trickle algorithm [[11]] to minimize the
number of control messages in dynamic network topolo-
gies (except with node mobility).

o Hardware independence: Matrix does not rely on spe-
cific radio chip features, and only assumes an underlying
collection tree structure.

e IoT integration: Matrix allocates global (and structured)
IPv6 addresses to all nodes, which allow nodes to act as
destinations integrated into the Internet, contributing to
the realization of the Internet of Things.

The rest of this paper is organized as follows. In Section 2]
we describe the Matrix protocol design. In Section[3] we ana-
lyze the message complexity of the protocol. In Section |4, we
present our analytic and simulation results. In Section [5] we
discuss some related work. Finally, in Section[6} we present the
concluding remarks.

2. Design overview

The objective of Matrix is to enable an underlying data col-
lection protocol (such as CTP and RPL) to perform any-to-any
routing in the Internet of Things while preserving memory and
message efficiency, as well as adaptability to networks topol-
ogy dynamicsﬂ Matrix is a network layer protocol that works
together with a routing protocol. Figure [I] illustrates the pro-
tocol’s architecture, which is divided into: routing engine and
forwarding engine. The routing engine is responsible for the
address space partitioning and distribution, as well as routing
table maintenance. The forwarding engine is responsible for
application packet forwarding.

Matrix encompasses the following execution phases:

Note that Matrix is not designed to address scenarios with node mobility,
but only to work with network topology dynamics caused by changes in link
quality, as well as node and link failures.

Application Layer

Transport Layer

Data collection
Protocol

Link Layer

Physical Layer

Data Plane

Control Plane

iy

Upper Layer
interface
/

Algorithm 1 MHCL.: Stabilization timer

(CTparent # IPparent)

Aggregation |
3
Alternative Address
Routing Table Assignment

Forwarding
Engine

Reverse Routing
Table

v

Below Layer
interface

Matrix
Routing
Engine

Underlying Routing
Protocol

1:

parentDefined = FALSE;

2: maxTime = spChild = Trickle;, ;

3: timer = rand(1/2 * Trickle,,;,, Trickle,,;,]; > reset timer
4: while NOT parentDefined do

5: if NOT-ROOT and TIMER-OFF then

6: if PARENT-CHANGED then

7: reset timer;

8: else

9: if timer < maxTime then
10: timer *=2; > double timer
11: else
12: parentDefined = TRUE;
13: end if
14: end if
15: end if

Figure 1: Matrix protocol’s architecture.

1. Collection tree initialization: the collection tree (Ctree)
is built by the underlying collection protocol; each node
achieves a stable knowledge about who its parent is; adap-
tive beaconing based on Trickle algorithm [11]] is used to
define stability;

2. IPv6 multihop host configuration: once the collection
tree is stable, the address hierarchy tree (IPtree) is built
using MHCL (Section [2.T)); this phase also uses adaptive
beaconing to handle network dynamics; by the end of
this phase, each node has received an IPv6 address range
from its parent, and each non-leaf node has partitioned
its address space among its children; the resulting ad-
dress hierarchy is stored in the distributed IPtree, which
initially has the same topology as Ctree, but in reverse,
top-down, direction.

3. Standard routing: bottom-up routing is done using the
collection tree, Ctree, and top-down routing is done us-
ing the address hierarchy represented by the IPtree; any-
to-any routing is performed by combining bottom-up for-
warding, until the lowest common ancestor (LCA) of sender
and receiver, and then top-down forwarding until the des-
tination.

4. Alternative top-down routing table upkeep: whenever
a node changes its parent in the initial collection tree, it
starts sending beacons to its new parent in Ctree, request-
ing to upkeep an entry in its routing table with its IPv6
range; such new links in Ctree, in reverse direction, com-
prise the RCtree routing tables for alternative (top-down)
routing;

5. Alternative top-down routing via local broadcast: when-
ever a node fails to forward a data packet to the next
hop/subtree in the IPtree, it broadcasts the packet to its
one-hop neighborhood; upon receiving a local broadcast,
all neighbors check if the destination IPv6 belongs to an
address range in their RCtree table; if positive, the packet
is forwarded to the correct subtree of IPtree. Otherwise,
the packet is dropped; we give a geometric argument and
show through simulations that such events are rare.

16: end while

Next, we describe the architecture of Matrix in more detail.

2.1. MHCL: Multihop Host Configuration for 6LoWPAN

Matrix is built upon the idea of IPv6 hierarchical address
allocation. The address space available to the border router of
the 6LOWPAN (e.g., the 64 least-significant bits of the IPv6 ad-
dress or a compressed 16-bit representation of it) is hierarchi-
cally partitioned among nodes connected to the border router
through a multihop cycle-free topology (implemented by stan-
dard protocols, such as RPL or CTP). Each node receives an
address range from its parent and partitions it among its chil-
dren, until all nodes receive an address. Since the address al-
location is performed hierarchically, the routing table of each
node has k entries, where k is the number of its (direct) chil-
dren. Each routing table entry aggregates the addresses of all
nodes in the subtree rooted at the corresponding child-node. A
portion, say r%, of the address space available to each node is
left reserved for possible future/delayed connections (parameter
r can be configured according to the expected number of newly
deployed nodes in the network, see Figure[2). We refer to the
resulting distributed tree structure as [Ptree.

Messages: MHCL uses two message types to build the
routing structure: MHC Laggregation and M HC Lpjgripusion T€SPEC-
tively MHCL4 and MHCL), for short. Messages MHCL, are
used in the upward routes, from child to parent. This message
carries the number of a node’s descendants, used in the aggrega-
tion phase. Messages of type MHCLp, are sent along downward
routes, from parent to child. This message is used for address
allocation and contains the address and corresponding address
partition assigned to a child node by its parent. Note that the
size of the first address and the size of the allocated address
partition can have a length predefined by the root, according to
the overall address space (we used a value of 16 bits because
the compressed host address has 16 bits). This information is
sufficient for the child node to decode the message and execute
the address allocation procedure for its children.

Network stabilization: In order to decide how the avail-
able address space is partitioned, nodes need to collect infor-

0 to 255
16 to 183 208 to 255
4 to 20
70% 102080 20%
27 to 151 Y
152 to 182 '
-A8) 0%) 204

Figure 2: MHCL: simplified IPtree example: 8-bit address space at the root and
6.25% reserved for future/delayed connections.

mation about the topology of the network. Once a stable view
of the network’s topology is achieved, the root starts distribut-
ing address ranges downwards to all nodes. Note that the notion
of stability is important to implement a coherent address space
partition. Therefore, MHCL has an initial set-up phase, during
which information about the topology is progressively updated
until a (predefined) sufficiently long period goes by without any
topology changes. To implement this adaptive approach, we
use Trickle-inspired timers to trigger messages (Algorithm [I)).
In Algorithmﬂ]two parameters are used: Trickle,,;, is the min-
imum time interval used by the Trickle algorithm, and spChild
is a multiplication factor used to define the maximum time in-
terval, such that, if no changes occur within it, then the parent
choice becomes stable, and the local variable parentDe fined is
set to TRUE. Since Matrix starts running at the same time as
the underlying protocol (in our case, CTP), in the initial state of
the network nodes do not have any information about neighbor-
ing links. CTP uses 4-bit metric (expected transmission count,
or ETX) to estimate the link quality and route cost. Therefore,
Matrix does not know when a node has finally chosen the best
connection to its neighbor, i.e., the node with the lowest ETX.
That is why Matrix uses the Trickle timer to define what we call
a “stable” network configuration. Note that, once the network
reaches an initial state of stability, later changes to topology are
expected to be of local nature, caused by a link or a node fail-
ure, or a change in the preferred parent of a node. In these cases,
the address allocation does not need to be updated, since local
mechanisms of message resubmission can be used to improve
message delivery rates, as described in Section
Descendants convergecast: After the initial network sta-
bilization, each node n; counts the total number of its descen-
dants, i.e., the size of the subtree rooted at itself, and propagates
it to its parent. Moreover, n; saves the number of descendants of
each child. If a node is not the root, and it has defined who the
preferred parent is (parentDe fined is TRUE) it starts by send-
ing a MHCL, message with count = 0 (Algorithm [2). Then
it waits for MHCL, messages from its children, updates the
number of descendants of each child, and propagates the up-

Algorithm 2 MHCL: Aggregation timer (non-root nodes)

1: maxTimeLeaf = spLeaf * Trickle;,;

2: timer = rand(1/2 * Trickle,,;,, Trickle,,;,]; > reset timer

3: count = 0; > counts descendants through MHCL4

messages

4: while NO-MHCLp-FROM-PARENT do

5: > hasn’t received IPv6 range
6: if NOT-ROOT and TIMER-OFF then
7
8
9

if parentDefined and (count < 1) then

send MHCL, to parent; » trigger aggregation

: end if
10: if COUNT-CHANGED then
11: send MHCLy to parent;
12: reset timer;
13: else
14: if timer < maxTimeLeaf then
15: timer *= 2;
16: end if
17: end if
18: end if

19: end while

Algorithm 3 MHCL: Aggregation timer (Root)
1: descendantsDefined = FALSE;
maxTimeRoot = spRoot = Trickle,;,;
timer = rand(1/2 = Trickle,,;,, Trickle,;,]; > reset timer
count = 0; > counts descendants through MHCL,
messages
while NOT descendantsDefined do
if IS-ROOT and TIMER-OFF then
if COUNT-CHANGED then
reset timer;

else
10: if timer < maxTimeRoot then
11: timerx = 2;
12: else
13: descendantsDefined = TRUE;
14: end if
15: end if
16: end if
17: end while

B

R A4

dated counter to the parent until its total number of descendants
is stable. If a node is the root, then it just updates the num-
ber of descendants of each child by receiving MHCL, mes-
sages until its total number of descendants is stable (Algorithm
[). Parameters spLeaf and spRoot are used to define stabiliza-
tion criteria in non-root nodes and the root node, respectively.
Once the aggregation phase is completed, the root’s local vari-
able descendantsDe fined is set to TRUE.

Address allocation: Once the root has received the (aggre-
gate) number of descendants of each child; it splits the avail-
able address space into k ranges proportionally to the size of
the subtree rooted at each child (see Algorithm [). Each node
n; repeats the space partitioning procedure upon receiving its

Algorithm 4 MHCL: IPv6 address distribution
1: STABLE = descendantsDefined or NOT-ROOT;
2: if STABLE and (IS-ROOT or RECEIVED-MHCLp) then
3: partition available address space;

4 for each child ¢; do

5: send MHCLp to c;; > send IPv6 “range”
6: if NO ack then

7: send MHCLp to ¢;; > retransmit
8 end if

9: end for

10: end if

address space from the parent and sends the proportional ad-
dress ranges to the respective children (always reserving r%
for delayed address allocation requests). The idea is to allo-
cate larger portions to larger subtrees, which becomes important
in especially large networks because it maximizes the address
space utilization. Note that this approach needs information ag-
gregated along multiple hops, which results in a longer set-up
phase.

Delayed connections: If an address allocation request from
anew child node is received after the address space had already
been partitioned and assigned, then the address allocation pro-
cedure is repeated using the reserved address space. Because of
the network stabilization phase and since a node does not know
how many descendants it has after the stabilization, we have
delayed connections of nodes that are not accounted during the
addressing stage. After the address allocation is complete, each
(non-leaf) node stores a routing table for downward traffic, with
an entry for each child. Each table entry contains the final ad-
dress of the address range allocated to the corresponding child,
and all table entries are sorted in increasing order of the final
address of each range. In this way, message forwarding can be
performed in (sub)linear time.

2.2. Control plane: distributed tree structures

After the network is initialized and all nodes have received
an IPv6 address range, three simultaneous distributed trees are
maintained on all nodes in the 6LoWPAN: Ctree: the col-
lection tree, maintained by the underlying collection protocol
(CTP/RPL). IPtree: the IPv6 address tree, built during the net-
work initialization phase and kept static afterward, except when
new nodes join the network, in which case they receive an IPv6
range from the reserved space of the respective parent node in
the collection tree.

RCltree: the reverse collection tree, reflecting the dynamics
of the collection tree in the opposite direction.

Initially, IPtree has the same topology as the reverse-collection

tree Ctree®, and RCtree has no links (see Figure and 3(b)).
IPtree = Ctree® and RCtree = ()

Whenever a change occurs in one of the links in Ctree, the new
link is added in the reverse direction into RCtree and maintained
as long as this topology change persists (see Figures and

RCtree = Ctree® \ IPtree

Therefore, RCtree is not really a tree since it contains only
the reversed links present in Ctree but not in I[Ptree. Neverthe-
less, its union with the “working” links in IPtree is, in fact, a
tree, which is used in the alternative top-down routing:

RCtree U (IPtree N Ctree®) :alternative routing tree.

Each node n; maintains the following information:

o CTparent;: the ID of the current parent in the dynamic
collection tree;

e [Parent;: the ID of the node that assigned n; its IPv6
range initially CT arent; = I Parent,);

e [Pchildren;: the standard (top-down) routing table, with
address ranges of each one-hop descendant of n; in the
IPtree;

o RChildren;: the alternative (top-down) routing table, with
address ranges of one-hop descendants in the RCtree.

Note that, each node stores only one-hop neighborhood in-
formation, so the memory footprint is O(k), where k is the num-
ber of a node’s children at any given moment in time, which is
optimal, considering that any (optimal) top-down routing mech-
anism would need at least one routing entry for every (current)
child in the tree topology to reach all destinations.

The routing engine (see Figure[T) is responsible for creating
and maintaining the IPtree and RCtree routing tables. IPtree
is created during the network initialization phase, while RC-
tree is updated dynamically to reflect changes in the network’s
link qualities. Whenever a node »; has its CT parent; updated,
and the current parent is different from its /Parent; (I Parent; +
CT parent,;), n; starts sending periodic beacons to its new parent,
with regular intervals (in our experiments, we set the beacon
interval to §/8, where ¢ is the maximum interval of the Trickle
timer used in CTP). Upon receiving a beacon (from a new child
in the collection tree), a node (n; = CT parent;) creates and
keeps an entry in its alternative routing table RChildren; with
the IPv6 address range of the subtree of n;. As soon as n; stops
using n; as the preferred parent, it stops sending beacons to n;.
If no beacon is received from »n; after 2 X ¢ ms, its (alternative)
routing entry is deleted. Therefore, links in RCtree are tempo-
rary and are deleted when not present in neither the collection
nor the IP trees.

2.3. Data plane: any-to-any routing

The forwarding engine (see FigureI)) is responsible for ap-
plication packet forwarding. Any-to-any routing is performed
by combining bottom-up forwarding, until the lowest common
ancestor of sender and receiver, and then top-down forward-
ing until the destination. Upon receiving an application layer
packet, each node n; verifies whether the destination IPv6 ad-
dress falls within some range j € IPchildren;: if yes then the
packet is forwarded (downwards) to node n;, otherwise, the
packet is forwarded (upwards) to CT parent;. Note that, since
each node has an IPv6 address, in contrast to collection proto-
cols, such as CTP and RPL, in Matrix, every node can act as

(5)—

7 o™

(a) Ctree structure, ID inside the nodes.

BR

Ctree changes I

. /4
%,
y
e
,
+ 7
O ’

(c) Links failure cause topology changes.

BR

/ de ®

(b) IP addres assignment by MATRIX hierar-
chical distribution. Simplified 8-bit IP inside

the nodes.
6EB8

&é

(d) RCtree adapts to topology changes.

| RCltree U IPtree |

Figure 3: RCtree example: before and after two links change in the collection tree.

a destination of messages originated inside and outside of the
6LoWPAN.

Each forwarded packet requests an acknowledgment from
the next hop and can be retransmitted up to 30 times (similarly
to what is done in CTP [6]). If after that no acknowledgment
is received, then the node performs a local broadcast, looking
for an alternative next hop in the RCtree table of a (one-hop)
neighbor. The alternative routing process is described in detail
below.

2.4. Fault tolerance and network dynamics

So why is Matrix robust to network dynamics? Note that,
since routing is based on the hierarchical address allocation, if
a node with the routing entries necessary to locate the next sub-
tree becomes unreachable for longer than approximately one
second (failures that last less than 1s are effectively dealt with
by retransmission mechanisms available in standard link layer

protocols), messages with destinations in that subtree are dropped.

When a node or link fails or changes in Ctree, RCtree re-
flects this change, and packets are forwarded from IPtree to
RCtree via a local broadcast. The node that receives a local-
broadcast checks in its RCtree whether it knows the subtree of
the destination IPv6 address: if yes then is forwards the packet

to the right subtree and the packet continues its path in the IP-
tree until the final destination.

Consider the following scenario: node X receives a packet
with destination IPv6 address D (see Figure d(a)). After con-
sulting its standard routing table /P — childreny, X forwards the
packet to C. However, the link X = C fails, for some reason,
and C does not reply with an acknowledgment. Then, X makes
a constant number (e.g., 30 times in CTP) of retransmission at-
tempts. Meanwhile, since node C also lost its connection to X,
it decides to change its parent in the collection tree to node A
(see Figure A(b)). Having changed its parent, C starts sending
beacons to A, which creates an entry in its alternative routing
table RC — childreny for the subtree rooted at C, and keeps it as
long as it receives periodic beacons from C (which will be done
as long as CT parentc = A).

Having received no acknowledgment from C, X activates
the local broadcast mode: it sets the message’s type to “LB”
and broadcasts it to all its one-hop neighbors (see Figure (c)).
Upon receiving the local broadcast, node A consults its alter-
native routing table and finds out that the destination address
D falls within the IPv6 address range C. It then forwards the
packet to C, from where the packets follow along its standard
route in the subtree of C (see Figure i(d)).

Message

\ dst: d
;\
,’ ‘\ CTparent(c)
PN @ IPparent(c)
r__2
\
ARY
N

1

I~
[

f

(a) x has a message to node d

CTparent(c)

Message

\ dst: d

IPparent(c)

(b) Link failure causes CTparent(c) to change

|-..Anyone

CTparent(c) knpws d?

Message
dst: d

IPp’érent(c)

(c) x tries sending by Local Broadcast

CTparent(c) IPparent(c)

(d) a forwards messages targeted to c’ sub-
tree while CTparent(c) = a

Figure 4: Alternative top-down routing upon Ctree change.

Note that this mechanism does not guarantee that the mes-
sage will be delivered. If no one-hop neighbor of X had the ad-
dress range of C in its alternative routing table, then the packet
would be lost. Nevertheless, we argue that the probability that
the message will be forwarded to the appropriate subtree is
high.

The local broadcast is a reactive mechanism that could be
alternatively implemented in a proactive way by adding tem-
porary routing entries to indicate that a link has changed to all
nodes in the path between the new parent and the LCA. Such a
proactive approach could be preferable if Matrix were designed
to work in a mobile node environment, where link changes were
not local and persistent. However, the memory footprint of such
a solution would be linear with the number of link changes in
each LCA node’s subtree. Local broadcast, on the other hand,
handles link dynamics (without node mobility), while guaran-
teeing a constant memory footprint at each node.

2.5. Alternative routing: geometric rationale

The success of the local broadcast mechanism lies in the
ability to forward messages top down along the IPtree, in spite
of one or more link or node failures on the way. Note that,
whenever a node of [Ptree is unavailable, it might not be pos-
sible to find the right subtree of the destination. Matrix is de-

signed to handle (non-adjacent) link or node failures and re-
lies on a single local broadcast and temporary reverse collection
links (RCltree).

Consider once again the scenario illustrated in Figure [F]
When a node X is unable to forward a packet to the next hop,
it activates the local broadcast mechanism, and it becomes es-
sential that one of X’s one-hop neighbors (in this case A) has
replaced X as a parent of C in the collection tree. Therefore,
given that the new parent of C is A, it becomes essential that X
and A are neighbors. We argue that it is unlikely that this is not
the case, and show our argument in a Unit Disk Graph (UDG)
model. We use the fact that the number of independent neigh-
bors of any node in a UDG is bounded by a small constant,
namely 5 [12]].

Given that the maximum number of neighbors that do not
know each other is very small, for any possible node distribu-
tion and density around X, the probability that two neighbors
of X are independent is low. In Figure since both X and
A are neighbors of C, the probability that they are themselves
neighbors is high. Similar arguments can be used to back the
effectiveness of the local broadcast mechanism when dealing
with different non-adjacent link and node failures.

Note that this reasoning is only valid in an open space with-
out obstacles and, even then, does not guarantee that the mes-

sage will be delivered. Nevertheless, our experiments show that
this intuition is in fact correct, and Matrix has a 95%—-99% mes-
sage delivery success in scenarios with node failures of increas-
ing frequency and duration.

3. Complexity Analysis

In this section, we assume a synchronous communication
model with point-to-point message passing. In this model, all
nodes start executing the algorithm simultaneously and time is
divided into synchronous rounds, i.e., when a message is sent
from node v to its neighbor u at time-slot #, it must arrive at u
before time-slot ¢ + 1.

We first analyze the message and time complexity of the
IPv6 address allocation phase of Matrix. Then, we look into
the message complexity of the control plane of Matrix after the
network initialization phase.

Note that Matrix requires that an underlying acyclic topol-
ogy (Ctree) has been constructed by the network before the ad-
dress allocation starts, i.e., every node knows who its parent in
the Ctree is. Moreover, one of the building blocks of Matrix is
the address allocation phase, described in Section @

Theorem 1. For any network of size n with a spanning col-
lection tree Ctree rooted at node root, the message and time
complexity of Matrix protocol in the address allocation phase is

Msg(Matrix'? (Ctree, root)) = O(n) and Time (Matrix'" (T, root))

= O(depth(Ctree)), respectively. This message and time com-
plexity is asymptotically optimal.

Proof. The address allocation phase is comprised of a tree broad-
cast and a tree convergecast. In the broadcast operation, a mes-
sage (with address allocation information) must be sent to ev-
ery node by the respective parent, which needs €2(n) messages.
Moreover, the message sent by the root must reach every node
at depth(Ctree) hops away, which needs Q(depth(Ctree)) time-
slots. Similarly, in the convergecast operation, every node must
send a message to its parent after having received a message
from its children, which needs Q(n) messages. Also, a mes-
sage sent by every leaf node must reach the root, at distance
< depth(Ctree), which needs Q(depth(Ctree)) time-slots. [

Next, we examine the communication cost of the routines
involved in the alternative routing, performed in the presence
of persistent node and link failures.

Theorem 2. Consider a network with n nodes and a failure
event that causes Leog links to change in the collection tree
Ctree for at most A ms. Moreover, consider a beacon interval
of 6 ms. The control message complexity of Matrix to perform
alternative routing is Msg(MatrixRC) = O(n).

Proof. Consider the L4 link changes in the collection tree
Ctree. Note that Lo = O(n) since Ctree is acyclic and, there-
fore, has at most n — 1 links. Every link that was changed must
be inserted in the RCtree table of the respective (new) parent
and kept during the interval A using regularly sent beacons from
the child to the parent. Given a beacon interval of d, the to-
tal number of control messages is bounded by A/6 X Loy =
Oo(n). O

Parameter Value
Base Station 1 center
Number of Nodes 100
Radio Range (m) 100
Density (nodes/m?) 10
Number of experiments 10
Path Loss Exponent 4.7
Power decay (dB) 554
Shadowing Std Dev (dB) 3.2
Simulation duration 20 min
Application messages 10 per node
Max. Routing table size 20 entries

Table 1: Simulation parameters

Note that, in reality, the assumptions of synchrony and point-
to-point message delivery do not hold in a 6LoWPAN. The mo-
ment in which each node joins the tree varies from node to node,
such that nodes closer to the root tend to start executing the ad-
dress allocation protocol earlier than nodes farther away from
the root. Moreover, collisions, node, and link failures can cause
delays and prevent messages from being delivered. We analyze
the performance of Matrix in an asynchronous model with col-
lisions and transient node and link failures of variable duration
through simulations in Section 4}

4. Evaluation

In this section, we evaluate Matrix performance against state-
of-the-art protocols such as RPL [7], CTP [6] and XCTP [10].
In order to do that, we conduct a bulk of experiments through
simulation, although Matrix’ code is ready to run into real de-
vices. We divide the experiments into three main classes: mem-
ory efficiency, protocol overhead, and protocol reliability.

In terms of memory efficiency, we analyze the routing table
usage as demand measurement to perform routing, and RAM
and ROM footprint as requisites to deploy the protocols. Also,
we measured the protocols cost regarding control message over-
head to build and maintain routing structures updated, in both
dynamic and static scenarios. We also measure the protocol re-
liability in terms of delivered data packets in both dynamic and
static scenarios.

4.1. Simulation setup

Matrix was implemented as a subroutine of CTP in TinyOS [[13]]

and the experiments were run using the TOSSIM simulator [14].
We compare Matrix with and without the local broadcast mech-
anism, to which we refer as MHCL. XCTP also was imple-
mented in TinyOS. RPL was implemented in ContikiOS [5]] and
was simulated on Cooja [[15].

Firstly, we run the protocols over a static network scenario
without link or node failures. Table[Tlists the default simulation
parameters for non-faulty scenario. We use the LinkLayerModel
tool from TinyOS to generate the topology and connectivity
model. We also simulated a range of faulty scenarios, based

Table 2: Faulty network scenarios

Probability (o) \ Duration (¢) \ Short Dur. Moderate Dur. Long Dur.
Low Prob. (1%, 10s) (1%, 20s) (1%, 40s)
Moderate Prob. (5%, 10s) (5%, 20s) (5%, 405s)
High Prob. (10%, 10s) (10%, 20s) (10 %, 40's)

on experimental data collected from TelosB sensor motes, de-
ployed in an outdoor environment [16]. In each scenario, after
every 60s of simulation, each node shutdowns its radio with
probability o and keeps the radio off for a time interval uni-
formly distributed in [¢ — 5,& + 5] seconds. Table [2] presents
a range of values for A and B, in which A scales from low to
high probabilities, and B from short to long time interval. So,
each scenario represents a combination of values of o and e.
Note that these are all node-failure scenarios, which are sig-
nificantly harsher than models that simulate link or per-packet
failures only.

On top of the network layer, we ran two different applica-
tions: top-down and any-to-any. In the top-down application,
each node sends 10 messages to the root and the root replies
with an acknowledgment. In the any-to-any application, each
node chooses randomly 10 destination addresses and sends one
message to each of those addresses. Nodes start sending appli-
cation messages 90 s after the simulation has started. The entire
simulation takes 20 minutes. Each simulation was run 10 times.
In each plot, the curve or bars represent the average, and the er-
ror bars the confidence interval of 95%. For each protocol, only
results relevant to each plot were included: e.g., CTP does not
have a reverse routing table to performs top-down routing, and
MHCL differs from Matrix only in faulty scenarios; otherwise,
it performs equally and therefore was omitted.

4.2. Results

Firstly, we turn our attention to memory efficiency of each
protocol. To evaluate the use of routing tables, we compare the
number of entries utilized by each protocol. Each node was
allocated a routing table of maximum size equal to 20 entries.
In Figure [5] we show the CCDFs (complementary cumulative
distribution functions) of the percentage of routing table usage
among nodeﬂ for Matrix, RPL, XCTP, and MHCL.

In this plot, Matrix was simulated in the faulty scenario,
where o and & were set to High Probability and Long Duration,
respectively (Table[2). Note that > 35% of nodes are leaves, i.e.,
do not have any descendants in the collection tree topology, and
therefore use zero routing table entries.

As we can see, RPL is the only protocol that uses 100% of
table entries for some nodes (> 25% of nodes have their tables
full). This is because RPL, in the storing mode, pro-actively
maintains an entry in the routing table of every node on the
path from the root to each destination, which quickly fills the
available memory and forces packets to be dropped.

3We measured the routing table usage of each node in one-minute intervals,
then took the average over 20 minutes.

-8 XCTP -4 MHCL MATRIX == RPL

0.6 +
A N
L
. +ey.
: Tk
2 s *+
- 04 i =~ s
2 A Rk
[T \ + -+ +-
o ey
o) '
0.2 A '
‘\
0.0 -
0 25 50 75 100

% routing table usage

Figure 5: Routing table usage CCDF. (Maximum table size = 20)

XCTP reactively stores reverse routes only when required.
Therefore, the number of routing entries used by XCTP de-
pends on the number of data flows going through each node.
Since the simulated flows were widely spaced during the simu-
lation time, the XCTP was able to perform efficiently.

The difference between MHCL and Matrix is small: MHCL
stores only the IPtree structure, whereas Matrix stores [Ptree
and RCtree data; the latter are kept only temporarily during par-
ent changes in the collection tree, so its average memory usage
is low.

0.0/10.0

RPL RPL

MATRIX [SN B
N MATRIX | o [

XCTP XCTP

P l2s ’ 1.81 25

CTP
1.5

Protocols
Protocols

30

5.0

RAM memory footprint (Kb) ROM footprint (Kb)

Figure 6: Code and memory footprint in bytes.

Figure [6] compares RAM and ROM footprints in the proto-
col stack of CTP, RPL, XCTP, and Matrix. We can see that Ma-
trix adds only a little more than 7 Kb of code to CTP, allowing
this protocol to perform any-to-any communication with high
scalability. When compared with RPL, the execution code of
Matrix requires less RAM. Compared to XCTP, Matrix uses al-
most the same amount of RAM.

In order to evaluate the protocols cost, we measure the pro-
tocols overhead to create and maintain the routing structures.
Figure [7] illustrates the amount of control traffic in our experi-
ments (the total number of beacons sent during the entire sim-
ulation). Figure [7(a)] shows the protocols cost for static sce-
nario. Matrix sends fewer control packets than RPL, because it

Static scenario

7500

5000

cTp

Number of Beacons

XcTP MATRIX RPL

(a) Static scenario

10000 Low Prob. r Mod. Prob. _ Hiah Prob. x
7500 %2}
=
o
5000 A
g
]] |
. § | [|
, 10000 - - -
c
S 7500
g 5
a -1
5 5000 ;
e =}
2 2500 £
" mml mmi I
E
= 0
10000
= = =
7500 -
o)
=3
5000 2
=}
c
. 1 (1

CTP XCTP MATRIX RPL CTP XCTP MATRIX RPL CTP XCTP MATRIX RPL

(b) Faulty scenarios

Figure 7: Number of control packets.

only sends additional beacons during network initialization and
in case of collection tree topology updates, whereas RPL has a
communication intensive maintenance of downward routes dur-
ing the entire execution time. Since XCTP is a reactive proto-
col, it does not send additional control packets, when compared
to CTP. Figure [7(b)] reports the protocols cost to every com-
bination of faulty parameters. Again, the protocols behaviour
repeat, but the total amount of control packets increases due
the network dynamics. In the worst scenario case (high prob-
ability and long duration), Matrix presents 45% less control
overhead than RPL. Matrix sends 22% more beacons than XCP
and CTP. However, Matrix maintains downwards routes unlike
XCTP and CTP.

To evaluate the protocols reliability, we analyze the delivery
rate. In Figure[8|we compare top-down routing success rate. We
measured the total number of application (ack) messages sent
downwards and successfully received by the destinationEl In the
plot, “inevitable losses” (unfilled bars) refers to the number of
messages that were lost due to a failure of the destination node,
in which case, there was no valid path to the destination and
the packet loss was inevitable. The remaining messages were
lost due to wireless collisions and node failures on the packet’s

4We do not plot the success rate of bottom-up traffic, since it is done by the
underlying collection protocol, without any intervention from Matrix.

10

,,,,,,

Top-down success rate
o
g

XCTP

MHCL MATRIX

(a) Static scenario

Low Prob. Mod. Prob.

h 1l o (|
075 v - -
| i i
| ' ,
050 -L- -t -L-
) I \
025
- - 1 -= 1 - 1
| i \
0.00 L | L L
. ER = =
| i 0
¥ S —e- —a-
| i j
I ' i
050 S1- i =i
\]]
| ' !
L
ozs |- - -|NEN L -, .- [
I I
0.00 L | L | L
[e
1 = —r—
. e e ==
| j j
| i i
050 - Lo -L- -4
\ i]
| ' |
oz | |
| ' I
0.00 L | L L

= -
MHCL XCTP MATRIX RPL MHCL XCTP MATRIX RPL MHCL

Hiah Prob.

XCTP MATRIX

ng Moys

“Ing ‘pow

Top-down success rate

n@ puo-

(b) Faulty scenarios

Figure 8: Top-down routing success rate.

path.

Figure [8(a)] shows the protocols top-down success rate for
the static scenario. All protocols present high top-down suc-
cess rate except RPL, which present poor delivery rate. RPL
proactively stores entries in the routing table, thus nodes table
nearby the root node quickly fill their entries and lack mem-
ory to store all top-down routes. In Figure [8(b)] we present the
protocols performance under faulty scenarios. We can see that,
when a valid path exists to the destination, the top-down success
rate of Matrix varies between 95% and 99%. In the harshest
faulty (High Prob. and Long Dur.), without the local broadcast
mechanism, MHCL delivers 85% of top-down messages. With
the local broadcast activated, the success rate increases to 95%,
i.e., roughly 2/3 of otherwise lost messages succeed in reaching
the final destination. Note that external factors may be causing
RPL’s low success rate. Since RPL was the only protocol im-
plemented on Contiki and evaluated in Cooja, native protocols
from this OS can interfere with the results. In [17], the authors
show how different radio duty cycling mechanisms affect the
performance of a RPL network. However, RPL delivered less
than 20% of messages in all simulated scenarios due to lack of
memory to store routes. Since XCTP is a reactive protocol, it
adapts best to failures and dynamics, because downward routes
are updated when a message travels upwards. In this way, the

Any-to-any success rate
°
g

i

RPL MHCL MATRIX

(a) Static scenario

Mod. Prob.

Low Prob. Hiah Prob.

Ing uoys

Any-to-any success rate

ng buoT

1
INa "PON

0.00 — —
MHCL MATRIX RPL

MHCL MATRIX RPL MHCL MATRIX

(b) Faulty scenarios

Figure 9: Any-to-any routing success rate.

top-down success rate of XCTP is higher even in the presence
of failures.

In Figure [9| we compare the any-to-any success rate. We
measured the total number of messages sent by a node that was
successfully received by the destination. In this application,
each node chooses randomly a destination address and sends
a message to this node. We can see that, as expected, there
is no significant difference between any-to-any and top-down
traffic patterns. Matrix performs any-to-any routing with 90%
to 100% success rate, when a valid path exists to the destination.
The success rate of RPL remains low, due to lack of memory to
store all the routing information needed.

Finally, in Figure |[10| we compare the response rate of Ma-
trix and XCTP. We calculate the rate of reply by dividing the
number of acknowledgments sent by the root by the number of
messages received by the root. We vary the reply delay, that
is, upon receipt of a message, the root will reply with an ac-
knowledgment after x milliseconds, where x € { 100, 200, 225,
250, 275, 300, 325, 350, 375, 400, 800 }. We can see that the
performance of XCTP is highly dependent on the number of
data flows. By increasing the application response delay, the
number of simultaneous flows increases and the response suc-
cess rate decreases, because nodes can not store all the infor-
mation needed. Matrix, on the other hand, does not depend on

11

-® MATRIX & XCTP

100 | ¢—osd 000000 ®
) v
8 |
T 075 {»
(%]
@
o
o '
g '
7 050
o
(7]
c
°
&
2 025
[

0.00

Response interval (ms)

Figure 10: Response success rate.

the number of flows, and the routing table usage is bounded by
the number of children of each node.

5. Related Work

AODV [18] and DSR [19] are on-demand routing proto-
cols for any-to-any communication. AODV floods the network
with messages RREQ to build a path till the destination. On the
other hand, the DSR protocol uses the packet header to store
the route path. Unlike DSR, our protocol does not store any
routing path information in the packet header. The AODV pro-
tocol has some similarity with XCTP in the strategy of storing
the reverse path. Performing a conceptual comparative between
these protocols with Matrix, it is easy to see that Matrix does
not save entire routes either in tables or packets. Dymo [20]
is the AODV successor, however, it is optimized for MANETSs.
In the context of low-power and lossy networks, CTP [6] and
CodeDrip [21]] were designed for bottom-up and top-down data
flow, respectively. They support communication in only one di-
rection. CodeDrip is a dissemination protocol that uses network
coding to recover lost packets by combining received packets.
Our approach is an any-to-any protocol that also enables dis-
semination. CTP is an efficient data collection protocol that
uses 4-bit [22]] metric to estimate the link quality and route
cost. Data and control packets are used to obtain the link qual-
ity on CTP. MultiHopLQI [23] and MintRoute [24] have the
same propose of CTP, but CTP overcomes them as shown in [6].
CGR [23] is a collection routing protocol that considers both
centrality and energy to improve network performance and de-
crease power consumption.

State-of-the-art routing protocols for 6LoWPAN that enable
any-to-any communication are RPL [7], XCTP [10], and Hy-
dro [26]. RPL allows two modes of operation (storing and
non-storing) for downwards data flow. The non-storing mode
is based on source routing, and the storing mode pro-actively
maintains an entry in the routing table of every node on the path

Matrix RPL CTP XCTP
Bottom-up traffic v v v v
Top-down traffic v v v
Any-to-any traffic v v
Address-allocation v
Memory efficiency v v
Fault tolerance v v

Table 3: Comparison between related protocols for 6LoWPAN.

from the root to each destination, which is not scalable to even
moderate-size networks. XCTP is an extension of CTP and is
based on a reactive reverse collection route creating between the
root and every source node. An entry in the reverse-route table
is kept for every data flow at each node on the path between the
source and the destination, which is also not scalable in terms
of memory footprint. Hydro protocol, like RPL, is based on
a DAG (directed acyclic graph) for bottom-up communication.
Source nodes need to periodically send reports to the border
router, which builds a global view (typically incomplete) of the
network topology.

More recent protocols [27, 28] [29] modified RPL to include
new features. In [27]], a load-balance technique is applied over
nodes to decrease power consumption. In [28] 29[, they provide
multipath routing protocols to improve throughput and fault tol-
erance.

This work is based on preliminary conference versions [30,
31]. In [31], MHCL, a preliminary proposal of the hierarchi-
cal address allocation scheme, was presented. MHCL differs
from Matrix because MHCL is not fault tolerant and does not
deal with network dynamics. In [30]], a preliminary evaluation
of Matrix was presented, however, the communication routines
of the addressing phase were not described in detail. In the
present journal version, additional experiments were executed,
comparing XCTP [10], a new baseline protocol that implements
reverse routing, against Matrix. In particular, we characterized
scenarios in which XCTP has severely degraded performance in
top-down routing, whereas Matrix’s performance is unaffected.
Finally, a new data traffic pattern application was implemented
and evaluated in the simulations, namely Any-to-Any routing.

Table [3] shows a comparison between the 6LoWPANSs pro-
tocols used in the analysis.

6. Conclusions

In this paper, we proposed Matrix: a novel routing protocol
that runs upon a distributed acyclic directed graph structure and
is comprised of two main phases: (1) network initialization, in
which hierarchical IPv6 addresses, which reflect the topology
of the underlying wireless network, are assigned to nodes in
a multihop way; and (2) reliable any-to-any communication,
which enables message and memory-efficient implementation
of a wide range of new applications for 6LoWPAN.

Matrix differs from previous work by providing a reliable
and scalable solution for any-to-any routing in 6LoWPAN, both

12

in terms of routing table size and control message overhead.
Moreover, it allocates global and structured IPv6 addresses to
all nodes, which allow nodes to act as destinations integrated
into the Internet, contributing to the realization of the Internet
of Things.

An interesting future direction is to study mobility in 6LoW-
PAN. We would like to evaluate the suitability of Matrix in mo-
bile scenarios, where nodes change their point-of-attachment to
the 6LoWPAN without changing their IPv6 address, exploring
features of the Mobile IPv6 protocol [32].

Acknowledgements

This work was supported in part by CAPES, CNPq and
FAPEMIG.

References

[1] G.Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, W. Hong, A macroscope in the red-
woods, in: Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, SenSys 05, 2005, pp. 51-63.

P. Vicaire, T. He, Q. Cao, T. Yan, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A.
Stankovic, T. F. Abdelzaher, Achieving long-term surveillance in vigilnet,
ACM Trans. Sen. Netw. 5 (1) (2009) 9:1-9:39.

G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, M. Welsh, Fidelity
and yield in a volcano monitoring sensor network, in: Proceedings of
the 7th Symposium on Operating Systems Design and Implementation,
OSDI °06, 2006, pp. 381-396.

Levis, Philip and Madden, Sam and Polastre, Joseph and Szewczyk,
Robert and Whitehouse, Kamin and Woo, Alec and Gay, David and Hill,
Jason and Welsh, Matt and Brewer, Eric and others, TinyOS: An operat-
ing system for sensor networks, Ambient intelligence 35 (2005) 115-148.
A. Dunkels, B. Gronvall, T. Voigt, Contiki - a lightweight and flexible
operating system for tiny networked sensors, in: IEEE LCN, IEEE Com-
puter Society, Washington, DC, USA, 2004, pp. 455-462.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, P. Levis, Collection tree
protocol, in: Proceedings of the 7th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys *09, 2009, pp. 1-14.

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, RFC 6550 (Proposed Standard) (2012).

A. Reinhardt, O. Morar, S. Santini, S. Zoller, R. Steinmetz, Cbfr: Bloom
filter routing with gradual forgetting for tree-structured wireless sensor
networks with mobile nodes, in: World of Wireless, Mobile and Multi-
media Networks (WoWMoM), 2012 IEEE International Symposium on
a, 2012, pp. 1-9. doi:10.1109/WoWMoM.2012.6263685,

S. Duquennoy, O. Landsiedel, T. Voigt, Let the tree bloom: Scalable op-
portunistic routing with orpl, in: Proceedings of the 11th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys *13, ACM, New
York, NY, USA, 2013, pp. 2:1-2:14./doi:10.1145/2517351.2517369.
URL http://doi.acm.org/10.1145/2517351.2517369

B. P. Santos, M. A. Vieira, L. F. Vieira, eXtend collection tree protocol, in:
Wireless Communications and Networking Conference (WCNC), 2015
IEEE, 2015, pp. 1512-1517. doi:10.1109/WCNC.2015.7127692,

P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: A self-regulating algo-
rithm for code propagation and maintenance in wireless sensor networks,
in: Proceedings of the 1st Conference on Symposium on Networked Sys-
tems Design and Implementation - Volume 1, NSDI’04, 2004, pp. 2-2.
B. N. Clark, C. J. Colbourn, D. S. Johnson, Unit disk graphs, Discrete
Math. 86 (1-3) (1991) 165-177.

Levis, Philip and Madden, Sam and Polastre, Joseph and Szewczyk,
Robert and Whitehouse, Kamin and Woo, Alec and Gay, David and Hill,
Jason and Welsh, Matt and Brewer, Eric and others, TinyOS: An operat-
ing system for sensor networks, Ambient intelligence 35 (2005) 115-148.

[2]

(3]

[4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

http://dx.doi.org/10.1109/WoWMoM.2012.6263685
http://doi.acm.org/10.1145/2517351.2517369
http://doi.acm.org/10.1145/2517351.2517369
http://dx.doi.org/10.1145/2517351.2517369
http://doi.acm.org/10.1145/2517351.2517369
http://dx.doi.org/10.1109/WCNC.2015.7127692

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable
simulation of entire tinyos applications, in: Proceedings of the 1st Inter-
national Conference on Embedded Networked Sensor Systems, SenSys
’03, ACM, New York, NY, USA, 2003, pp. 126-137. doi:10.1145/
958491 .958506.

URL http://doi.acm.org/10.1145/958491.958506

J. Eriksson, F. Osterlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, P. J. Marrén, Cooja/mspsim: Interoperability testing for wire-
less sensor networks, in: Proceedings of the 2Nd International Confer-
ence on Simulation Tools and Techniques, Simutools’09, 2009, pp. 27:1—
27:7.

N. Baccour, A. Koubda, L. Mottola, M. A. Zifiga, H. Youssef, C. A.
Boano, M. Alves, Radio link quality estimation in wireless sensor net-
works: A survey, ACM Trans. Sen. Netw. 8 (4) (2012) 34:1-34:33.

M. Bezunartea, M. Gamallo, J. Tiberghien, K. Steenhaut, How interac-
tions between rpl and radio duty cycling protocols affect qos in wireless
sensor networks, in: Proceedings of the 12th ACM Symposium on QoS
and Security for Wireless and Mobile Networks, Q2SWinet 16, ACM,
New York, NY, USA, 2016, pp. 135-138. |doi:10.1145/2988272.
2988279.

URL http://doi.acm.org/10.1145/2988272.2988279

C. E. Perkins, E. M. Royer, Ad-hoc on-demand distance vector routing,
in: Mobile Computing Systems and Applications, 1999. Proceedings.
WMCSA’99. Second IEEE Workshop on, 1999.

D. Johnson, Y. Hu, D. Maltz, et al., The dynamic source routing protocol
for mobile ad hoc networks, Tech. rep., RFC 4728 (2007).

Dynamic manet on-demand (aodvv2) routing draft-ietf-manet-dymo-
26., http://tools.ietf.org/html/draft-ietf-manet-dymo-26
(2013).

N. d. S. R. Junior, M. A. Vieira, L. F. Vieira, O. Gnawali, Codedrip: Data
dissemination protocol with network coding for wireless sensor networks,
in: Wireless Sensor Networks, Springer, 2014, pp. 34-49.

R. Fonseca, O. Gnawali, K. Jamieson, P. Levis, Four-bit wireless link
estimation., in: HotNets, 2007.

MultiHopLQI., http://www.tinyos.net/tinyos-2.x/tos/1lib/
net/1qi/|(2014).

13

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

A. Woo, T. Tong, D. Culler, Taming the underlying challenges of reli-
able multihop routing in sensor networks, in: International Conference
on Embedded Networked Sensor Systems, ACM, 2003.

B. P. Santos, L. F. Vieira, M. A. Vieira, CGR: Centrality-based Green
Routing for Low-Power and Lossy Networks, Computer Networks (2017)
—doi:https://doi.org/10.1016/j.comnet.2017.09.009.
Dawson-Haggerty, Stephen and Tavakoli, Arsalan and Culler, David, Hy-
dro: A hybrid routing protocol for low-power and lossy networks, in:
Smart Grid Communications (SmartGridComm), 2010 First IEEE Inter-
national Conference on, IEEE, 2010, pp. 268-273.

U. Palani, V. Alamelumangai, A. Nachiappan, Hybrid routing and
load balancing protocol for wireless sensor network, Wireless Networks
(2015) 1-8d0i:10.1007/s11276-015-1110-1,

URL http://dx.doi.org/10.1007/s11276-015-1110-1

M. N. Moghadam, H. Taheri, M. Karrari, Multi-class multipath rout-
ing protocol for low power wireless networks with heuristic optimal
load distribution, Wirel. Pers. Commun. 82 (2) (2015) 861-881. |doi:
10.1007/s11277-014-2257-2,

URL http://dx.doi.org/10.1007/s11277-014-2257-2

M. A. Lodhi, A. Rehman, M. M. Khan, F. B. Hussain, Multiple path
rpl for low power lossy networks, in: Wireless and Mobile (APWiMob),
2015 IEEE Asia Pacific Conference on, 2015, pp. 279-284. |doi:10.
1109/APWiMob.2015.7374975.

B. S. Peres, O. A. d. O. Souza, B. P. Santos, E. R. A. Junior, O. Gous-
sevskaia, M. A. M. Vieira, L. F. M. Vieira, A. A. E. Loureiro, Ma-
trix: Multihop address allocation and dynamic any-to-any routing for
6lowpan, in: Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Sys-
tems, MSWiM ’16, ACM, New York, NY, USA, 2016, pp. 302-309.
doi:10.1145/2988287.2989139,

B. S. Peres, O. Goussevskaia, Ipv6 multihop host configuration for low-
power wireless networks, in: Computer Networks and Distributed Sys-
tems (SBRC), 2015 XXXIII Brazilian Symposium on, 2015, pp. 189-198.
doi:10.1109/SBRC.2015.31,

E. C. Perkins, D. Johnson, J. Arkko, Mobility support in ipv6, Tech. rep.,
RFC 6275 (2011).

http://doi.acm.org/10.1145/958491.958506
http://doi.acm.org/10.1145/958491.958506
http://dx.doi.org/10.1145/958491.958506
http://dx.doi.org/10.1145/958491.958506
http://doi.acm.org/10.1145/958491.958506
http://doi.acm.org/10.1145/2988272.2988279
http://doi.acm.org/10.1145/2988272.2988279
http://doi.acm.org/10.1145/2988272.2988279
http://dx.doi.org/10.1145/2988272.2988279
http://dx.doi.org/10.1145/2988272.2988279
http://doi.acm.org/10.1145/2988272.2988279
http://tools.ietf.org/html/draft-ietf-manet-dymo-26
http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/
http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/
http://dx.doi.org/https://doi.org/10.1016/j.comnet.2017.09.009
http://dx.doi.org/10.1007/s11276-015-1110-1
http://dx.doi.org/10.1007/s11276-015-1110-1
http://dx.doi.org/10.1007/s11276-015-1110-1
http://dx.doi.org/10.1007/s11276-015-1110-1
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1007/s11277-014-2257-2
http://dx.doi.org/10.1109/APWiMob.2015.7374975
http://dx.doi.org/10.1109/APWiMob.2015.7374975
http://dx.doi.org/10.1145/2988287.2989139
http://dx.doi.org/10.1109/SBRC.2015.31

	Introduction
	Design overview
	MHCL: Multihop Host Configuration for 6LoWPAN
	Control plane: distributed tree structures
	Data plane: any-to-any routing
	Fault tolerance and network dynamics
	Alternative routing: geometric rationale

	Complexity Analysis
	Evaluation
	Simulation setup
	Results

	Related Work
	Conclusions

