
Manuscript Details

Manuscript number COMCOM_2017_244

Title Matrix: Multihop Address allocation and dynamic any-To-any Routing for
6LoWPAN

Article type Research Paper

Abstract

Standard routing protocols for IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) are mainly
designed for data collection applications and work by establishing a tree-based network topology, which enables
packets to be sent upwards, from the leaves to the root, adapting to dynamics of low-power communication links. In
this work, we propose Matrix, a platform-independent routing protocol that utilizes the existing tree structure of the
network to enable reliable and efficient any-to-any data traffic in 6LoWPAN. Matrix uses hierarchical IPv6 address
assignment in order to optimize routing table size, while preserving bidirectional routing. Moreover, it uses a local
broadcast mechanism to forward messages to the right subtree when persistent node or link failures occur. We
implemented Matrix on TinyOS and evaluated its performance both analytically and through simulations on TOSSIM.
Our results showed that the proposed protocol is superior to available protocols for 6LoWPAN, when it comes to any-
to-any data communication, in terms of reliability, message efficiency, and memory footprint.

Keywords 6LoWPAN; IPv6; CTP; RPL; any-to-any routing; fault tolerance.

Corresponding Author Bruna Peres

Order of Authors Bruna Peres, Otavio A. de O. Souza, Bruno P. Santos, Olga Goussevskaia,
Marcos A. M. Vieira, Luiz F. M. Vieira, Antonio Loureiro

Submission Files Included in this PDF

File Name [File Type]

COMCOM.letter-toEditors.pdf [Cover Letter]

MATRIX___ComCom.pdf [Manuscript File]

Submission Files Not Included in this PDF

File Name [File Type]

MATRIX - ComCom.zip [LaTeX Source File]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.



 

 

Computer Science Department 

Universidade Federal de Minas Gerais 

Av. Antônio Carlos 6627 - Pampulha 

31370-010 - Belo Horizonte - Brazil 

e-mail: bperes@dcc.ufmg.br 

March 27, 2017 

 

 

 

Dear Editors, 

Dear Reviewers, 

 

Please, find attached the article entitled “Matrix: Multihop Address allocation and dynamic any-To-any 

Routing for 6LoWPAN”, by Bruna Peres, Otavio A. de O. Souza, Bruno P. Santos, Olga Goussevskaia, 

Marcos A. M. Vieira, Luiz F. M. Vieira, and Antonio A.F. Loureiro. 

 

We note that the current manuscript extends our previous work with the same title, published at ACM 

MSWIM 2016. In the current work we present an extended and deeper analysis of the Matrix routing 

protocol.  

 

In summary, the current manuscript extends our previous work by presenting the following additions: 

 

1. In this work we describe in detail all the communication routines of MHCL, the Multihop Host 

Configuration for 6LoWPAN, which is an important building block of the Matrix protocol. Note 

that MHCL was not described in detail in the MSWiM paper, but a preliminary analysis of it 

was previously published in [2] (SBRC 2015). 

2. All the experiments were executed again and compared to a new baseline protocol, namely the 

XCTP [7]. We performed an in-depth analysis of data traffic scenarios which favor different 

protocols. In particular, we characterize scenarios in which XCTP has severely degraded 

performance in top-down routing, whereas Matrix’s performance is unaffected. 

3. A new data traffic pattern application was implemented and evaluated in the simulations, 

namely Any-to-Any routing. 

4. We summarize the main (common and different) features of related protocols for 6LoWPAN in 

the Related Work Section. 

 

 

We hope you find this manuscript suitable for publication at Elsevier Computer Communications 

Journal. 

 

Best regards 

 

The authors 



Matrix: Multihop Address allocation and dynamic
any-To-any Routing for 6LoWPAN

Bruna Peresa,∗, Otavio A. de O. Souzaa, Bruno P. Santosa, Olga
Goussevskaiaa, Marcos A. M. Vieiraa, Luiz F. M. Vieiraa, Antonio A. F.

Loureiroa

aComputer Science Department, Universidade Federal de Minas Gerais (UFMG)
Av. Antonio Carlos 6627, Belo Horizonte, MG, Brazil.

Abstract

Standard routing protocols for IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN) are mainly designed for data collection applications and

work by establishing a tree-based network topology, which enables packets to

be sent upwards, from the leaves to the root, adapting to dynamics of low-

power communication links. In this work1, we propose Matrix, a platform-

independent routing protocol that utilizes the existing tree structure of the

network to enable reliable and efficient any-to-any data traffic in 6LoWPAN.

Matrix uses hierarchical IPv6 address assignment in order to optimize routing

table size, while preserving bidirectional routing. Moreover, it uses a local

broadcast mechanism to forward messages to the right subtree when persistent

node or link failures occur. We implemented Matrix on TinyOS and evaluated

its performance both analytically and through simulations on TOSSIM. Our

results showed that the proposed protocol is superior to available protocols

for 6LoWPAN, when it comes to any-to-any data communication, in terms of

reliability, message efficiency, and memory footprint.

Keywords: 6LoWPAN, IPv6, CTP, RPL, any-to-any routing, fault tolerance

∗Corresponding author
Email addresses: bperes@dcc.ufmg.br (Bruna Peres), oaugusto@dcc.ufmg.br (Otavio

A. de O. Souza), bruno.ps@dcc.ufmg.br (Bruno P. Santos), olga@dcc.ufmg.br (Olga
Goussevskaia), mmvieira@dcc.ufmg.br (Marcos A. M. Vieira), lfvieira@dcc.ufmg.br (Luiz
F. M. Vieira), loureiro@dcc.ufmg.br (Antonio A. F. Loureiro)

1This manuscript is based on preliminary conference versions [1, 2].

Preprint submitted to Computer Communications March 27, 2017



1. Introduction

IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN2) is a

working group inspired by the idea that even the smallest low-power devices

should be able to run the Internet Protocol to become part of the Internet of

Things. Standard routing protocols for 6LowPAN, such as CTP (Collection5

Tree Protocol [3]) and RPL (IPv6 Routing Protocol for Low-Power and Lossy

Networks [4]), have two distinctive characteristics: communication devices use

unstructured IPv6 addresses that do not reflect the topology of the network

(typically derived from their MAC addresses), and routing lacks support for any-

to-any communication since it is based on distributed collection tree structures10

focused on bottom-up data flows (from the leaves to the root).

The advantage of a tree topology is a small routing table, since each node

just needs to establish who his parent-node is and maintain only that informa-

tion for packet forwarding. The disadvantage of such structures is that other

communication patterns, like downward (point-to-multipoint, P2MP) or any-15

to-any (peer-to-peer, P2P) bidirectional data flows, are not easily implemented.

The problem with such one-directional routing is it makes it inefficient to build

important network functions, such as configuration routines and reliable mech-

anisms to ensure the delivery of end-to-end data. In order to do that, addition

communication routines have to be implemented and extensive routing infor-20

mation has to be inserted into the routing tables of memory-constrained nodes.

Therefore, such standard protocols do not allow a straight-forward implemen-

tation of any-to-any communication patterns.

Even though CTP does not support any-to-any traffic, the specification of

RPL defines two modes of operation for top-down data flows: the non-storing25

mode, which uses source routing, and the storing mode, in which each node

2We use the acronym 6LoWPAN to refer to Low power Wireless Personal Area Networks

that use IPv6
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maintains a routing table for all possible destinations. This requires O(n)

space (where n is the total number of nodes), which is unfeasible for memory-

constrained devices. Our experiments show that in random topologies with one

hundred nodes, with no link or node failures, RPL succeeds to deliver less than30

20% of top-down messages sent by the root (see Figure 9).

Some works have addressed this problem from different perspectives. In

[5], ORPL, an extension of RPL, uses bloom filters and opportunistic routing

to decrease control traffic overload. In [6], point-to-point communication is

enabled because each node in a collection tree stores the addresses of its direct35

and indirect child nodes using Bloom filters. In [7], XCTP is proposed as an

extension of CTP, which uses opportunistic and reverse-path routing to enable

bi-directional communication in CTP. XCTP is efficient in terms of message

overload, but exhibits the problem of high memory footprint, since each node

needs to store an entry in the local routing table for every data flow going40

through that node.

In this work, we build upon the idea of using hierarchical IPv6 address

allocation and propose Matrix, a routing scheme for dynamic network topologies

and fault-tolerant any-to-any data flows in 6LoWPAN. Matrix assumes there is

an underlying collection tree topology (provided by CTP or RPL, for instance),45

in which nodes have static locations, i.e., are not mobile, and links are dynamics,

i.e., nodes might choose different parents according to link quality dynamics.

Matrix uses only one-hop information in the routing tables and implements a

local broadcast mechanism to forward messages to the right subtree when node

or link failures occur. Local broadcast is activated by a node when it fails to50

forward a message to the next hop (subtree) in the address hierarchy.

After the network has been initialized and all nodes have received an IPv6

address range, three simultaneous distributed trees are maintained by all nodes:

the collection tree (Ctree), the IPv6 address tree (IPtree), and the reverse col-

lection tree (RCtree), reflecting the dynamics of the collection tree in the reverse55

direction. Initially, any-to-any packet forwarding is performed using Ctree for

bottom-up and IPtree for top-down data flows. Whenever a node or link fails
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or Ctree changes, the new link is added in the reverse direction into RCtree and

is maintained as long as this topology change persists. Top-down data packets

are then forwarded from IPtree to RCtree via a local broadcast. The node that60

receives a local-broadcast checks whether it knows the subtree of the destination

IPv6 address: if yes then is forwards the packet to the right subtree via RCtree

and the packet continues its path in the IPtree until the final destination.

Why is this approach robust to network dynamics? Routing is performed us-

ing the address hierarchy represented by the IPtree, so whenever a link or node65

fails, messages addressed to destinations in the corresponding subtree may be

lost. Matrix uses the (dynamic) reverse collection tree and the local broadcast

mechanism to forward messages to the right subtree, as long as an alternative

route exists. Note that this local rerouting mechanism does not guarantee that

all messages will be delivered. We argue that the probability that the message70

will be forwarded to the appropriate subtree is high, as long as there is a valid

path, due to the geometric properties of wireless networks. Our simulations

showed that this intuition is, in fact, correct. In adverse network conditions,

without the local broadcast mechanism, Matrix delivers 85% of top-down mes-

sages when a route exists; with the local broadcast activated, the success rate75

increases to 95% (roughly 2/3 of otherwise lost messages succeed in reaching

the final destination).

Why does this approach scale? Each node stores only one-hop neighborhood

information, namely: the id of its parent in Ctree, the IPv6 address ranges of its

children in the IPtree, and the IPv6 address ranges of its (temporary) children80

in the RCtree. Therefore, the memory footprint at each node is O(k), where

k is the number of children at any given moment in time. The impact of such

low memory footprint on the end-to-end routing success is impressive: whereas

RPL delivers less than 20% of packets in some scenarios, Matrix delivers 99%

of packets successfully, without end-to-end mechanisms.85

We evaluated the proposed protocol both analytically and by simulation.

Even though Matrix is platform-independent, we implemented it as a subroutine

of CTP on TinyOS and conducted simulations on TOSSIM. The results showed
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that, when it comes to any-to-any communication, Matrix presents significant

gains in terms of reliability (high any-to-any message delivery) and scalability90

(presenting a constant, as opposed to linear, memory complexity at each node)

at a moderate cost of additional control messages, when compared to other

state-of-the-art protocols, such as XCTP and RPL.

To sum up, Matrix achieves the following essential goals that motivated our

work:95

• Any-to-any routing: Matrix enables end-to-end connectivity between

hosts located within or outside the 6LoWPAN.

• Memory efficiency: Matrix uses compact routing tables and, therefore,

is scalable to very large networks.

• Reliability: Matrix achieves 99% delivery without end-to-end mecha-100

nisms, and delivers ≥ 90% of end-to-end packets when a route exists under

challenging network conditions.

• Communication efficiency: Matrix uses adaptive beaconing based on

Trickle algorithm [8] to minimize the number of control messages in dy-

namic network topologies (except with node mobility).105

• Hardware independence: Matrix does not rely on specific radio chip

features, and only assumes an underlying collection tree structure.

• IoT integration: Matrix allocates global (and structured) IPv6 addresses

to all nodes, which allow nodes to act as destinations integrated into the

Internet, contributing to the realization of the Internet of Things.110

The rest of this paper is organized as follows. In Section 2, we describe the

Matrix protocol design. In Section 3, we analyze the message complexity of

the protocol. In Section 4, we present our analytical and simulation results. In

Section 5, we discuss some related work. Finally, in Section 6, we present the

concluding remarks.115
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2. Design overview

The objective of Matrix is to enable any-to-any routing in an underlying

data collection protocol for 6LoWPAN, such as CTP and RPL, while preserv-

ing memory and message efficiency, as well as adaptability to networks topology

dynamics3. Matrix is a network layer protocol that works together with a rout-120

ing protocol. Figure 1 illustrates the protocol’s architecture, which is divided

into: routing engine and forwarding engine. The routing engine is responsi-

ble for the address space partitioning and distribution, as well as routing table

maintenance. The forwarding engine is responsible for application packet for-

warding.125
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Figure 1: Matrix protocol’s architecture.

Matrix is comprised of the following execution phases:

3Note that Matrix is not designed to address scenarios with node mobility, but only to

work with network topology dynamics caused by changes in link quality, as well as node and

link failures.
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1. Collection tree initialization: the collection tree (Ctree) is built by

the underlying collection protocol; each node achieves a stable knowledge

about who its parent is; adaptive beaconing based on Trickle algorithm

[8] is used to define stability;130

2. IPv6 multihop host configuration: once the collection tree is stable,

the address hierarchy tree (IPtree) is built using MHCL (Section 2.1); this

phase also uses adaptive beaconing to handle network dynamics; by the

end of this phase, each node has received an IPv6 address range from its

parent and each non-leaf node has partitioned its own address space among135

its children; the resulting address hierarchy is stored in the distributed

IPtree, which initially has the same topology as Ctree, but in reverse,

top-down, direction.

3. Standard routing: bottom-up routing is done using the collection tree,

Ctree, and top-down routing is done using the address hierarchy rep-140

resented by the IPtree; any-to-any routing is performed by combining

bottom-up forwarding, until the least common ancestor of sender and re-

ceiver, and then top-down forwarding until the destination.

4. Alternative top-down routing table upkeep: whenever a node changes

its parent in the initial collection tree, it starts sending beacons to its new145

parent in Ctree, requesting to upkeep an entry in its routing table with

its own IPv6 range; such new links in Ctree, in reverse direction, comprise

the RCtree routing tables for alternative (top-down) routing;

5. Alternative top-down routing via local broadcast: whenever a node

fails to forward a data packet to the next hop/subtree in the IPtree, it150

broadcasts the packet to its one-hop neighborhood; upon receiving a local

broadcast, all neighbors check if the destination IPv6 belongs to an address

range in their RCtree table; if positive, the packet is forwarded to the

correct subtree of IPtree, otherwise, the packet is dropped; we give a

geometric argument and show through simulations that such events are155

rare.
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Next we describe the architecture of Matrix in more detail.

2.1. MHCL: Multihop Host Configuration for 6LoWPAN

Matrix is built upon the idea of IPv6 hierarchical address allocation. The

address space available to the border router of the 6LoWPAN (e.g., the 64160

least-significant bits of the IPv6 address or a compressed 16-bit representation

of it) is hierarchically partitioned among nodes connected to the border router

through a multihop cycle-free topology (implemented by standard protocols,

such as RPL or CTP). Each node receives an address range from its parent and

partitions it among its children, until all nodes receive an address. Since the165

address allocation is performed in a hierarchical way, the routing table of each

node has k entries, where k is the number of its (direct) children. Each routing

table entry aggregates the addresses of all nodes in the subtree rooted at the

corresponding child-node. A portion, say r%, of the address space available to

each node is left reserved for possible future/delayed connections (parameter r170

can be configured according to the expected number of newly deployed nodes in

the network, see Figure 2). We refer to the resulting distributed tree structure

as IPtree.

Messages: MHCL uses two message types: MHCLA (MHCLAggregation)

e MHCLD (MHCLDistribution). Messages of type MHCLA are used in the175

upward routes, from child to parent. This message carries the number of a

node’s descendants, used in the aggregation phase. Messages of type MHCLD

are sent along downward routes, from parent to child. This message is used for

address allocation and contains the address and corresponding address partition

assigned to a child node by its parent. Note that the size of the first address and180

the size of the allocated address partition can have a length predefined by the

root, according to the overall address space (we used a value of 16 bits, because

the compressed host address has 16 bits). This information is sufficient for the

child node to decode the message and execute the address allocation procedure

for its children.185

Network stabilization: In order to decide how the available address space
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Figure 2: MHCL: simplified IPtree example: 8-bit address space at the root and 6.25% reserved

for future/delayed connections.

is partitioned, nodes need to collect information about the topology of the net-

work. Once a stable view of the network’s topology is achieved, the root starts

distributing address ranges downwards to all nodes. Note that the notion of

stability is important to implement a coherent address space partition. There-190

fore, MHCL has an initial set-up phase, during which information about the

topology is progressively updated, until a (predefined) sufficiently long period

of time goes by without any topology changes. To implement this adaptive

approach, we use Trickle-inspired timers to trigger messages (Algorithm 1). In

Algorithm 1 two parameters are used: Tricklemin is the minimum time interval195

used by the Trickle algorithm, and spChild is a multiplication factor used to

define the maximum time interval, such that, if no changes occur within it, then

the parent choice becomes stable, and the local variable parentDefined is set

to TRUE. Note that, once the network reaches an initial state of stability, later

changes to topology are expected to be of local nature, caused by a link or a200

node failure, or a change in the preferred parent of a node. In these cases, the

address allocation does not need to be updated, since local mechanisms of mes-

sage resubmission can be used to improve message delivery rates, as described

in Section 2.4.

Descendants convergecast: After the initial network stabilization, each205
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Algorithm 1 MHCL: Stabilization timer

1: parentDefined = FALSE;

2: maxTime = spChild ∗ Tricklemin ;

3: timer = rand(1/2 ∗ Tricklemin, Tricklemin]; . reset timer

4: while NOT parentDefined do

5: if NOT-ROOT and TIMER-OFF then

6: if PARENT-CHANGED then

7: reset timer;

8: else

9: if timer < maxTime then

10: timer *= 2; . double timer

11: else

12: parentDefined = TRUE;

13: end if

14: end if

15: end if

16: end while

node ni counts the total number of its descendants, i.e., the size of the subtree

rooted at itself, and propagates it to its parent. Moreover, ni saves the number

of descendants of each child. If a node is not the root, and it has defined who the

preferred parent is (parentDefined is TRUE) it starts by sending a MHCLA

message with count = 0 (Algorithm 2). Then it waits for MHCLA messages210

from its children, updates the number of descendants of each child, and propa-

gates the updated counter to the parent until its total number of descendants is

stable. If a node is the root, then it just updates the number of descendants of

each child by receiving MHCLA messages until its total number of descendants

is stable (Algorithm 3). Parameters spLeaf and spRoot are used to define sta-215

bilization criteria in non-root nodes and the root node, respectively. Once the

aggregation phase is completed, the root’s local variable descendantsDefined

is set to TRUE.
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Algorithm 2 MHCL: Aggregation timer (non-root nodes)

1: maxTimeLeaf = spLeaf ∗ Tricklemin;

2: timer = rand(1/2 ∗ Tricklemin, Tricklemin]; . reset timer

3: count = 0; . counts descendants through MHCLA messages

4: while NO-MHCLD-FROM-PARENT do

5: . hasn’t received IPv6 range

6: if NOT-ROOT and TIMER-OFF then

7: if parentDefined and (count < 1) then

8: send MHCLA to parent; . trigger aggregation

9: end if

10: if COUNT-CHANGED then

11: send MHCLA to parent;

12: reset timer;

13: else

14: if timer < maxTimeLeaf then

15: timer *= 2;

16: end if

17: end if

18: end if

19: end while

Address allocation: Once the root has received the (aggregate) number of

descendants of each child, it partitions the available address space into k ranges220

of size proportional to the size of the subtree rooted at each child (see Algo-

rithm 4). Each node ni repeats the space partitioning procedure upon receiving

its own address space from the parent and sends the proportional address ranges

to the respective children (always reserving r% for delayed address allocation

requests). The idea is to allocate larger portions to larger subtrees, which be-225

comes important in especially large networks, because it maximizes the address

space utilization. Note that this approach needs information aggregated along

multiple hops, which results in a longer set-up phase.
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Algorithm 3 MHCL: Aggregation timer (Root)

1: descendantsDefined = FALSE;

2: maxTimeRoot = spRoot ∗ Tricklemin;

3: timer = rand(1/2 ∗ Tricklemin, Tricklemin]; . reset timer

4: count = 0; . counts descendants through MHCLA messages

5: while NOT descendantsDefined do

6: if IS-ROOT and TIMER-OFF then

7: if COUNT-CHANGED then

8: reset timer;

9: else

10: if timer < maxTimeRoot then

11: timer∗ = 2;

12: else

13: descendantsDefined = TRUE;

14: end if

15: end if

16: end if

17: end while

Delayed connections: If an address allocation request from a new child

node is received after the address space had already been partitioned and as-230

signed, then the address allocation procedure is repeated using the reserved

address space.

After the address allocation is complete, each (non-leaf) node stores a rout-

ing table for downward traffic, with an entry for each child. Each table entry

contains the final address of the address range allocated to the corresponding235

child, and all table entries are sorted in increasing order of the final address of

each range. In this way, message forwarding can be performed in (sub)linear

time.
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Algorithm 4 MHCL: IPv6 address distribution

1: STABLE = descendantsDefined or NOT-ROOT;

2: if STABLE and (IS-ROOT or RECEIVED-MHCLD) then

3: partition available address space;

4: for each child ci do

5: send MHCLD to ci; . send IPv6 “range”

6: if NO ack then

7: send MHCLD to ci; . retransmit

8: end if

9: end for

10: end if

2.2. Control plane: distributed tree structures

After the network is initialized and all nodes have received an IPv6 address240

range, three simultaneous distributed trees are maintained on all nodes in the

6LoWPAN: Ctree: the collection tree, maintained by the underlying collection

protocol (CTP/RPL). IPtree: the IPv6 address tree, built during the network

initialization phase and kept static afterwards, except when new nodes join the

network, in which case they receive an IPv6 range from the reserve space of the245

respective parent node in the collection tree. RCtree: the reverse collection

tree, reflecting the dynamics of the collection tree in the reverse direction.

Initially, IPtree has the same topology as the reverse-collection tree CtreeR,

and RCtree has no links (see Figure 3(a) and 3(b)).

IP tree = CtreeR and RCtree = ∅

Whenever a change occurs in one of the links in Ctree, the new link is added

in the reverse direction into RCtree and maintained as long as this topology

change persists (see Figures 3(c) and 3(d)).

RCtree = CtreeR \ IP tree

Therefore, RCtree is not really a tree since it contains only the reversed links

present in Ctree but not in IPtree. Nevertheless, its union with the “working”

13



links in IPtree is, in fact, a tree, which is used in the alternative top-down

routing:

RCtree ∪ (IP tree ∩ CtreeR) :alternative routing tree.

(a) (b)

(c) (d)

Figure 3: RCtree example: before and after two links change in the collection tree.

Each node ni maintains the following information:

• CTparenti: the ID of the current parent in the dynamic collection tree;

• IParenti: the ID of the node that assigned ni its IPv6 range initially250

CTarenti = IParenti);

• IPchildreni: the standard (top-down) routing table, with address ranges

of each one-hop descendant of ni in the IPtree;

• RChildreni: the alternative (top-down) routing table, with address ranges

of one-hop descendants in the RCtree.255

14



Note that, each node stores only one-hop neighborhood information, so the

memory footprint is O(k), where k is the number of a node’s children at any

given moment in time, which is optimal, considering that any (optimal) top-

down routing mechanism would need at least one routing entry for every (cur-

rent) child in the tree topology to reach all destinations.260

The routing engine (see Figure 1) is responsible for creating and maintaining

the IPtree and RCtree routing tables. IPtree is created during the network

initialization phase, while RCtree is updated dynamically to reflect changes in

the network’s link qualities. Whenever a node ni has its CTparenti updated,

and the current parent is different from its IParenti (IParenti 6= CTparenti),265

ni starts sending periodic beacons to its new parent, with regular intervals (in

our experiments, we set the beacon interval to δ/8, where δ is the maximum

interval of the Trickle timer used in CTP). Upon receiving a beacon (from a

new child in the collection tree), a node (nj = CTparenti) creates and keeps an

entry in its alternative routing table RChildrenj with the IPv6 address range270

of the subtree of ni. As soon as ni stops using nj as the preferred parent, it

stops sending beacons to nj . If no beacon is received from ni after 2× δ ms, its

(alternative) routing entry is deleted. Therefore, links in RCtree are temporary

and are deleted when not present in neither the collection nor the IP trees.

2.3. Data plane: any-to-any routing275

The forwarding engine (see Figure 1) is responsible for application packet for-

warding. Any-to-any routing is performed by combining bottom-up forwarding,

until the least common ancestor of sender and receiver, and then top-down for-

warding until the destination. Upon receiving an application layer packet, each

node ni verifies whether the destination IPv6 address falls within some range280

j ∈ IPchildreni: if yes then the packet is forwarded (downwards) to node nj ,

otherwise, the packet is forwarded (upwards) to CTparenti. Note that, since

each node has an IPv6 address, in contrast to collection protocols, such as CTP

and RPL, in Matrix, every node can act as a destination of messages originated

inside and outside of the 6LoWPAN.285
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Each forwarded packet requests an acknowledgment from the next hop and

can be retransmitted up to 30 times (similarly to what is done in CTP [3]).

If thereafter no acknowledgment is received, then the node performs a local

broadcast, looking for an alternative next hop in the RCtree table of a (one-

hop) neighbor. The alternative routing process is described in detail below.290

2.4. Fault tolerance and network dynamics

So why is Matrix robust to network dynamics? Note that, since routing

is based on the hierarchical address allocation, if a node with the routing en-

tries necessary to locate the next subtree becomes unreachable for longer than

approximately one second (failures that last less than 1s are effectively dealt295

with by retransmission mechanisms available in standard link layer protocols),

messages with destinations in that subtree are dropped.

When a node or link fails or changes in Ctree, RCtree reflects this change,

and packets are forwarded from IPtree to RCtree via a local broadcast. The

node that receives a local-broadcast checks in its RCtree whether it knows the300

subtree of the destination IPv6 address: if yes then is forwards the packet to

the right subtree and the packet continues its path in the IPtree until the final

destination.

Consider the following scenario: node X receives a packet with destination

IPv6 address D (see Figure 4(a)). After consulting its standard routing table305

IP − childrenX , X forwards the packet to C. However, the link X ⇒ C fails,

for some reason, and C does not reply with an acknowledgment. Then, X

makes a constant number (e.g., 30 times in CTP) of retransmission attempts.

Meanwhile, since node C also lost its connection to X, it decides to change its

parent in the collection tree to node A (see Figure 4(b)). Having changed its310

parent, C starts sending beacons to A, which creates an entry in its alternative

routing table RC − childrenA for the subtree rooted at C, and keeps it as long

as it receives periodic beacons from C (which will be done as long as CTparentC

= A).

Having received no acknowledgement from C, X activates the local broadcast315
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(a) (b)

(c) (d)

Figure 4: Alternative top-down routing upon Ctree change.

mode: it sets the message’s type to “LB” and broadcasts it to all its one-hop

neighbors (see Figure 4(c)). Upon receiving the local broadcast, node A consults

its alternative routing table and finds out that the destination address D falls

within the IPv6 address range C. It then forwards the packet to C, from where

the packets follows along its standard route in the subtree of C (see Figure 4(d)).320

Note that this mechanism does not guarantee that the message will be deliv-
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ered. If no one-hop neighbor of X had the address range of C in its alternative

routing table, then the packet would be lost. Nevertheless, we argue that the

probability that the message will be forwarded to the appropriate subtree is

high.325

2.5. Alternative routing: geometric rationale

The success of the local broadcast mechanism lies in the ability to forward

messages top down along the IPtree, in spite of one or more link or node failures

on the way. Note that, whenever a node of IPtree is unavailable, it might not

be possible to find the right subtree of the destination. Matrix is designed to330

handle (non-adjacent) link or node failures and relies on a single local broadcast

and temporary reverse collection links (RCtree).

Consider once again the scenario illustrated in Figure 4. When a node X

is unable to forward a packet to the next hop, it activates the local broadcast

mechanism, and it becomes essential that one of X’s one-hop neighbors (in this335

case A) has replaced X as a parent of C in the collection tree. Therefore, given

that the new parent of C is A, it becomes essential that X and A are neighbors.

We argue that it is unlikely that this is not the case.

Our argument is of geometric nature. Since the considered 6LoWPAN is

wireless, we show our argument in a unit disk graph (UDG) model [9]. We340

use the fact that the number of independent neighbors of any node in a UDG

is bounded by a small constant, namely 5. The proof of this fact is sketched

in Figure 5: consider a node X and its neighbor A. Any node located inside

the gray region is a neighbor of both X and A, so any neighbor of X that is

independent of (not adjacent to) A has to be outside the gray area and inside345

the circle around X. Let’s call this neighbor B. The next independent neighbor

of X has to be located outside the 60 degree sector that starts at B, and so on.

This procedure can be repeated no more than 5 times, before the 360 degrees

around X are covered.

Given that the maximum number of neighbors that do not know each other350

is very small, for any possible node distribution and density around X, the

18



 

X 

60° 60° 
60° 

60° 120° 

A 

B 

C 

D 

E 

Figure 5: UDG model: the number of independent neighbors of X is at most 5.

probability that two neighbors of X are independent is low. In Figure 4(c),

since both X and A are neighbors of C, the probability that they are themselves

neighbors is high. Similar arguments can be used to back the effectiveness of

the local broadcast mechanism when dealing with different non-adjacent link355

and node failures.

Note that this reasoning is only valid in an open space without obstacles and,

even then, does not guarantee that the message will be delivered. Nevertheless,

our experiments show that this intuition is in fact correct, and Matrix has a

95%–99% message delivery success in scenarios with node failures of increasing360

frequency and duration.

3. Complexity Analysis

In this section, we assume a synchronous communication model with point-

to-point message passing. In this model, all nodes start executing the algorithm

simultaneously and time is divided into synchronous rounds, i.e., when a message365

is sent from node v to its neighbor u at time-slot t, it must arrive at u before
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time-slot t+ 1.

We first analyze the message and time complexity of the IPv6 address al-

location phase of Matrix. Then, we look into the message complexity of the

control plane of Matrix after the network initialization phase.370

Note that Matrix requires that an underlying acyclic topology (Ctree) has

been constructed by the network before the address allocation starts, i.e., every

node knows who its parent in the Ctree is. Moreover, one of the building blocks

of Matrix is the address allocation phase, described in Section 2.1.

Theorem 1. For any network of size n with a spanning collection tree Ctree375

rooted at node root, the message and time complexity of Matrix protocol in

the address allocation phase is Msg(MatrixIP (Ctree, root)) = O(n) and Time

(MatrixIP (T, root)) = O(depth(Ctree)), respectively. This message and time

complexity is asymptotically optimal.

Proof. The address allocation phase is comprised of a tree broadcast and a tree380

convergecast. In the broadcast operation, a message (with address allocation

information) must be sent to every node by the respective parent, which needs

Ω(n) messages. Moreover the message sent by the root must reach every node

at distance depth(Ctree) hops away, which needs Ω(depth(Ctree)) time-slots.

Similarly, in the convergecast operation, every node must send a message to385

its parent after having received a message from its children, which needs Ω(n)

messages. Also, a message sent by every leaf node must reach the root, at

distance ≤ depth(Ctree), which needs Ω(depth(Ctree)) time-slots.

Next, we examine the communication cost of the routines involved in the

alternative routing, performed in the presence of persistent node and link fail-390

ures.

Theorem 2. Consider a network with n nodes and a failure event that causes

LCT links to change in the collection tree Ctree for at most ∆ ms. Moreover,

consider a beacon interval of δ ms. The control message complexity of Matrix

to perform alternative routing is Msg(MatrixRC) = O(n).395
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Proof. Consider the LCT link changes in the collection tree Ctree. Note that

LCT = O(n) since Ctree is acyclic and, therefore, has at most n−1 links. Every

link that was changed must be inserted in the RCtree table of the respective

(new) parent and kept during the interval ∆ using regularly sent beacons from

the child to the parent. Given a beacon interval of δ, the total number of control400

messages is bounded by ∆/δ × LCT = O(n).

Note that, in reality, the assumptions of synchrony and point-to-point mes-

sage delivery do not hold in a 6LoWPAN. The moment in which each node joins

the tree varies from node to node, such that nodes closer to the root tend to

start executing the address allocation protocol earlier than nodes farther away405

from the root. Moreover, collisions, node and link failures can cause delays and

prevent messages from being delivered. We analyze the performance of Matrix

in an asynchronous model with collisions and transient node and link failures

of variable duration through simulations in Section 4.

4. Evaluation410

In this section, we evaluate the performance of Matrix through simulations.

In Section 4.1 we describe the simulations setup and used parameters. In Section

4.2 we evaluate the number of beacons transmitted, the usage of routing tables

and memory footprint, the downward routing success and response rate success

and compare Matrix with three state-of-the-art protocols: RPL [4], CTP [3]415

and XCTP [7].

4.1. Simulation setup

Matrix was implemented as a subroutine of CTP in TinyOS [10] and the ex-

periments were run using the TOSSIM simulator [11]. We compare Matrix with

and without the local broadcast mechanism, to which we refer as MHCL. RPL420

was implemented in Contiki [12] and was simulated on Cooja [13]. Table 1 lists

the default simulation parameters used for each protocol, in a non-faulty sce-
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nario. We use the LinkLayerModel tool from TinyOS to generate the topology

and connectivity model.

We simulated a range of faulty scenarios, based on experimental data col-425

lected from TelosB sensor motes, deployed in an outdoor environment [14]. In

each scenario, after every 60 seconds of simulation, each node shutdowns its

radio with probability σ and keeps the radio off for a time interval uniformly

distributed in [ε − 5, ε + 5] seconds (see Table 2). The first scenario (Scn1)

represents a network without node failures. The remaining scenarios represent430

a combination of values of σ and ε. Note that these are all node-failure scenar-

ios, which are significantly harsher than models that simulate link or per-packet

failures only.

On top of the network layer, we ran two different applications: top-down and

any-to-any. In the top-down application, each node sends 10 messages to the435

root and the root replies with an ack. In the any-to-any application, each node

chooses randomly 10 destination addresses and sends one message to each of

those addresses. Nodes start sending application messages 90 seconds after the

simulation has started. The entire simulation takes 20 minutes. Each simulation

was run 10 times. In each plot, the curve or bars represent the average, and440

the error bars the confidence interval of 95%. For each protocol, only results

relevant to each plot were included: e.g., CTP does not have a routing table

nor performs top-down routing, and MHCL differs from Matrix only in faulty

scenarios, otherwise it performs equally and therefore was omitted.

4.2. Results445

Firstly, we turn our attention to memory efficiency of each protocol. To

evaluate the usage of routing tables, we compare the number of entries used

by each protocol. Each node was allocated a routing table of maximum size

equal to 20 entries. In Figure 6, we show the CDFs (cumulative distribution
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Table 1: Simulation parameters

Parameter Value

Base Station 1 center

Number of Nodes 100

Radio Range (m) 100

Density (nodes/m2) 10

Number of experiments 10

Path Loss Exponent 4.7

Power decay (dB) 55.4

Shadowing Std Dev (dB) 3.2

Simulation duration 20 min

Application messages 10 per node

Max. Routing table size 20 entries

Table 2: Faulty network scenarios

σ\ε 10 s 20 s 40 s

1% Scenario 2 Scenario 3 Scenario 4

5% Scenario 5 Scenario 6 Scenario 7

10% Scenario 8 Scenario 9 Scenario 10

functions) of the percentage of routing table usage among nodes4, and compare450

Matrix, RPL, XCTP, and MHCL.

In this plot, Matrix was simulated in the faulty scenario #10 (Table 2).

Note that > 35% of nodes are leaves, i.e., do not have any descendants in the

collection tree topology, and therefore use zero routing table entries.

As we can see, RPL is the only protocol that uses 100% of table entries for455

some nodes (≥ 30% of nodes have their tables full). This is due to the fact that

4We measured the routing table usage of each node in one-minute intervals, then took the

average over 20 minutes.
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RPL, in the storing mode, pro-actively maintains an entry in the routing table

of every node on the path from the root to each destination, which quickly fills

the available memory and forces packets to be dropped.

XCTP reactively stores reverse routes only when required. Therefore, the460

number of routing entries used by XCTP depends on the number of data flows

going through each node. Since the simulated flows were widely spaced during

the simulation time, the XCTP was able to perform efficiently.

The difference between MHCL and Matrix is small: MHCL stores only the

IPtree structure, whereas Matrix stores IPtree and RCtree data; the latter is465

kept only temporarily during parent changes in the collection tree, so its average

memory usage is low.
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Figure 6: Routing table usage CDF. (Maximum table size = 20)

Figure 7 illustrates the amount of control traffic in our experiments (the total
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number of beacons sent during the entire simulation). Matrix sends fewer con-

trol packet than RPL, because it only sends additional beacons during network470

initialization and in case of collection tree topology updates, whereas RPL has

a communication intensive maintenance of downward routes during the entire

execution time. Since XCTP is a reactive protocol, it does not send additional

control packets, when compared to CTP.
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Figure 7: Number of control packets.

Figure 8 compares RAM and ROM footprints in the protocol stack of CTP,475

RPL, XCTP, and Matrix. We can see that Matrix adds only a little more than

7KB of code to CTP, allowing this protocol to perform any-to-any communi-

cation with high scalability. When compared with RPL, the execution code of

Matrix requires less RAM. Compared to XCTP, Matrix uses almost the same

amount of RAM.480

In Figure 9 we compare top-down routing success rate. We measured the

total number of application (ack) messages sent downwards and successfully
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received by the destination.5 In the plot, “inevitable losses” refers to the number

of messages that were lost due to a failure of the destination node, in which case,

there were no valid path to the destination and the packet loss was inevitable.485

The remaining messages were lost due to wireless collisions and node failures

on the packet’s path.

We can see that, when a valid path exists to the destination, the top-down

success rate of Matrix varies between 95% and 99%. In the harshest faulty

scenario 10, without the local broadcast mechanism, MHCL delivers 85% of490

top-down messages. With the local broadcast activated, the success rate in-

creases to 95%, i.e., roughly 2/3 of otherwise lost messages succeed in reaching

the final destination. Note that external factors may be causing RPL’s low

success rate. Since RPL was the only protocol implemented on Contiki and

5We do not plot the success rate of bottom-up traffic, since it is done by the underlying

collection protocol, without any intervention from Matrix.
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evaluated in Cooja, native protocols from this OS can interfere on the results.495

In [15], the authors show how different radio duty cycling mechanisms affect

the performance of a RPL network. However, RPL delivered less than 20% of

messages in all simulated scenarios, which occurs due to lack of memory to store

all the top-down routes. Since XCTP is a reactive protocol, it adapts best to

failures and dynamics, because downward routes are updated when a message500

travels upwards. In this way, the top-down success rate of XCTP is higher even

in the presence of failures.
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Figure 9: Top-down routing success rate.

In Figure 10 we compare the any-to-any success rate. We measured the total

number of messages sent by a node that was successfully received by the desti-

nation. In this application, each node chooses randomly a destination address505

and sends a message to this node. We can see that, as expected, there is no big

difference between any-to-any and top-down traffic patterns. Matrix performs

any-to-any routing with 90% to 100% success rate, when a valid path exists to

the destination. The success rate of RPL remains low, due to lack of memory
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to store all the routing information needed.510
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Figure 10: Any-to-any routing success rate.

Finally, in Figure 11 we compare the response rate of Matrix and XCTP. We

calculate the response rate by dividing the number of acknowledgements sent by

the root by the number of messages received by the root. We vary the response

delay, that is, upon receiving a message, the root will reply with an acknowledg-

ment after xmilliseconds, x ∈ {100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 800}.515

We can see that the performance of XCTP is highly dependent on the number of

data flows. By increasing the application response delay, the number of simul-

taneous flows increases and the response success rate decreases, because nodes

can not store all the information needed. Matrix, on the other hand, does not

depend on the number of flows, and the routing table usage is bounded by the520

number of children of each node.
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5. Related Work

AODV [16] and DSR [17] are traditional wireless protocols that allow any-

to-any communication, but they were designed for 802.11 and require too many

states or apply several overheads on the packet header. In the context of low-525

power and lossy networks, CTP [3] and CodeDrip [18] were designed for bottom-

up and top-down data flows, respectively. They support communication in only

one direction.

State-of-the-art routing protocols for 6lowPAN that enable any-to-any com-

munication are RPL [4], XCTP [7], and Hydro [19]. RPL allows two modes of530

operation (storing and non-storing) for downwards data flows. The non-storing

mode is based on source routing, and the storing mode pro-actively maintains

an entry in the routing table of every node on the path from the root to each

destination, which is not scalable to even moderate-size networks. XCTP is an

extension of CTP and is based on a reactive reverse collection route creating535

between the root and every source node. An entry in the reverse-route table
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Table 3: Comparison between related protocols for 6LoWPAN.

MATRIX RPL CTP XCTP

Bottom-up traffic

Top-down traffic

Any-to-any traffic

Address-allocation

Memory efficiency

Fault tolerance

is kept for every data flow at each node on the path between the source and

the destination, which is also not scalable in terms of memory footprint. Hydro

protocol, like RPL, is based on a DAG (directed acyclic graph) for bottom-up

communication. Source nodes need to periodically send reports to the border540

router, which builds a global view (typically incomplete) of the network topol-

ogy. Table 3 shows a comparison between the cited protocols for 6LoWPANs.

Some more recent protocols [20, 21, 22] modified RPL to include new fea-

tures. In [20], a load-balance technique is applied over nodes to decrease power

consumption. In [21, 22], they provide multipath routing protocols to improve545

throughput and fault tolerance.
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6. Conclusions

In this paper, we proposed Matrix: a novel routing protocol that runs upon550

a distributed acyclic directed graph structure and is comprised of two main

phases: (1) network initialization, in which hierarchical IPv6 addresses, which

reflect the topology of the underlying wireless network, are assigned to nodes in
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a multihop way; and (2) reliable any-to-any communication, which enables mes-

sage and memory-efficient implementation of a wide range of new applications555

for 6LoWPAN.

Matrix differs from previous work by providing a reliable and scalable solu-

tion for any-to-any routing in 6LoWLAN, both in terms of routing table size

and control message overhead. Moreover, it allocates global and structured IPv6

addresses to all nodes, which allow nodes to act as destinations integrated into560

the Internet, contributing to the realization of the Internet of Things.

An interesting future direction is to study mobility in 6LoWPAN. We would

like to evaluate the suitability of Matrix in mobile scenarios, where nodes change

their point-of-attachment to the 6LowPAN without changing their IPv6 address,

exploring features of the Mobile IPv6 protocol [23].565
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