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ABSTRACT
This paper investigates two fundamental characteristics of a
wireless multihop network: its minimum node degree and its
k–connectivity. Both topology attributes depend on the spa-
tial distribution of the nodes and their transmission range.
Using typical modeling assumptions — a random uniform
distribution of the nodes and a simple link model — we de-
rive an analytical expression that enables the determination
of the required range r0 that creates, for a given node den-
sity ρ, an almost surely k–connected network. Equivalently,
if the maximum r0 of the nodes is given, we can find out
how many nodes are needed to cover a certain area with a
k–connected network. We also investigate these questions
by various simulations and thereby verify our analytical ex-
pressions. Finally, the impact of mobility is discussed.
The results of this paper are of practical value for re-

searchers in this area, e.g., if they set the parameters in a
network–level simulation of a mobile ad hoc network or if
they design a wireless sensor network.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Network
architecture and design—wireless communication, network
communications, network topology ; G.2.2 [Discrete math-
ematics]: Graph theory; F.2.2 [Probability and statis-
tics]: Stochastic processes

General Terms
Design, Performance, Theory
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1. INTRODUCTION
Wireless multihop networks are formed by a group of

nodes that communicate with each other over a wireless
channel. They operate in a decentralized and self–organizing
manner and do not rely on fixed network infrastructure.
Each node can act as a router to forward traffic toward its
destination.
While the fundamental idea of such packet radio networks

goes back to at least the 1970s [1], recent years have shown
a tremendous comeback of research in this area (see, e.g., [2,
3, 4]). A great advantage of mobile wireless multihop sys-
tems is that they can be formed in a spontaneous and fast
way; this is why they are called “ad hoc networks.” Sev-
eral application scenarios, such as ad hoc communication
between mobile computers for conferencing and home net-
working, wireless sensor networks [5], multihop extensions
of cellular telecommunication systems [6], and networks of
vehicles [7, 8] are in the minds of researchers and developers.
Good progress has been made in the development of pro-

tocols (e.g., routing, medium access) that take the unique
characteristics of ad hoc networks into account, but less
work has been done to investigate ad hoc networks in an
analytical manner and to find a convenient and exact math-
ematical description for modeling. In this paper, we address
the latter two issues.
We investigate a very fundamental and important prop-

erty of wireless multihop networks, namely their connec-
tivity . Whereas in wireless networks with fixed infrastruc-
ture (e.g., cellular telecommunication networks or wireless
LANs), it is sufficient that each mobile node has a wireless
link to at least one base station, the situation in a decen-
tralized ad hoc network is more complicated. To achieve a
fully connected ad hoc network, there must be a wireless
multihop path from each mobile node to each other mobile
node. The connectivity therefore depends on the number
of nodes per unit area (node density) and their radio trans-
mission range. Each single mobile node contributes to the
connectivity of the entire network.
The correct adjustment of the nodes’ radio transmission
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power is therefore an important system feature. As in cel-
lular networks, power adjustment can reduce interference
while maintaining a certain Quality of Service. In ad hoc
networks, it also allows the controlling of the topology of
the network [9, 10]. If we increase the transmission power of
a node, it will typically achieve a higher transmission range
and therefore reach more other nodes via a direct link. On
the other hand, if we make the transmission power of a node
very low, the node may become isolated without any link to
other nodes.
In this context, this paper addresses the following ques-

tions: For a given number of nodes n per area A, what is the
minimum radio transmission range r0 required to achieve

• an ad hoc network in which no node is isolated?
• a fully connected ad hoc network, i.e., a network in

which each node can reach each other node via a wire-
less multihop path?

This range assignment problem arises, for example, if we
want to set the system parameters for network–level sim-
ulations of ad hoc networks. We investigate this question
analytically and by simulation under typical modeling as-
sumptions, namely a random uniform node distribution with
n nodes on a system area A and a simple channel model in
which each node has the same transmission range r0.
An equivalent problem must be solved in the system de-

sign of wireless multihop networks. For example, a large–
scale sensor network should cover a certain area A to per-
form environmental monitoring. The used sensor type can
transmit a range r0 in the given environment (e.g., free
space). How many sensors of this type do we need to obtain
a connected network (see also [11])?
In addition to the basic problems “no isolated node” and

“connected network,” we also consider a network design that
is robust against node and link outages. That is, how can
we achieve with minimized resources

• an ad hoc network in which each node has at least n0

neighbors (n0 ≥ 1)?
• an ad hoc network that will still be connected if any

k − 1 nodes fail (k–connected network)?

Before we present the solutions to these problems, Sec-
tion 2 describes the used network model in more detail, and
Section 3 recalls some basic definitions of graph theory and
introduces the terms used in this paper. The main contri-
butions of this paper are presented in Sections 4 and 5.
In Section 4, we derive an expression for the probability

that each node in the network has at least n0 neighbors
(n0 = 0, 1, 2 . . .). For given parameters (n, ρ) we can state
how to set the range r0 to achieve, with a certain probability
p, a network with no isolated node. We also investigate these
questions by simulations and thereby verify our analytical
expressions. To solve the problem of a connected network
(Section 5), we model an ad hoc network as a so–called geo-
metric random graph. A recently published theorem in this
mathematical research field allows us to make some inter-
esting statements about the probability that a homogeneous
ad hoc network is connected or even k–connected. Most im-
portant, we can calculate the range r0 and density ρ that
is required to obtain an almost surely k–connected network.
Again, we perform simulations for k = 1, 2, and 3.
Section 6 discusses the impact of mobility on our results,

and Section 7 outlines related articles and compares them to
our contributions. Finally, Section 8 concludes this paper.

r0

Isolated node

Figure 1: Modeling the topology of ad hoc networks

2. NETWORK MODEL
Three fundamental models are needed to represent the dy-

namic topology of a wireless ad hoc network in system–level
investigations: (a) a model for the spatial node distribution,
(b) a model for the wireless channel between the nodes, and
(c) a model for the movement behavior of the nodes. A
common way to do this is as follows:
From a set of n network nodes, each node is independently

randomly placed on a two–dimensional simulation area A.
A uniform random distribution is used, such that for large n
and large A we can define a constant node density ρ = n/A.
It denotes the expected number of nodes per unit area.
To model the wireless transmission between the nodes,

a radio link model is assumed in which each node has a
certain transmission range r0 and uses omnidirectional an-
tennas. As illustrated in Figure 1, two nodes are able to
communicate directly via a wireless link, if they are within
range of each other. Only bidirectional links are considered.
This link model corresponds to a propagation model with a
certain signal attenuation (path loss). Let P0 = P (r = 0)
denote the transmitted signal power at the sending node and
P (r) the received power at a distance r from the sender. The
received power falls off as P (r) ∝ r−γ P0, where γ is the path
loss exponent, which depends on the environment (typically
2 ≤ γ ≤ 5). The wireless transmission range r0 can then
be mapped to the equivalent transmission power P0 using
a threshold for receiver sensitivity Ps. A node can receive
properly if P (r = r0) ≥ Ps.
All nodes are free to move in the system area according

to a certain mobility model (e.g., random waypoint, random
direction, street model, etc.). This issue will be discussed in
Section 6.
In summary, such a network model is not very sophis-

ticated, but it is well–suited for investigations of the fun-
damental properties of the network topology (such as con-
nectivity) and the behavior of distributed algorithms (e.g.,
routing, leader election, radio resource management, topol-
ogy control).

3. SOME BASIC GRAPH THEORY
With this network model, we can represent an ad hoc net-

work at each time instant as an undirected graph G. A graph
G = G(V, E) consists of a set of n nodes (vertices) and a set
of m node pairs (edges, links). The set of nodes, denoted
by V = {1, . . . , n}, represent the network–enabled ad hoc
devices; and the set of edges, denoted by E, represent the
wireless communication links. Since our channel model only
considers bidirectional communication links and ignores uni-
directional links, we only consider undirected graphs, i.e.,
all link relations on node pairs are symmetric. In order to
understand the following sections, we recall some basic def-
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a. unconnected G b. (1–)connected G c. 2–connected G

Figure 2: Illustration of graph connectivity

initions of graph theory and define the nomenclature used
in this paper.

3.1 Node Degree
The degree of a node u, denoted as d(u), is the number

of neighbors of node u, i.e., its number of links. A node of
degree d = 0 is isolated, i.e., it has no neighbors (see Fig. 1).
The minimum node degree of a graph G is denoted as

dmin(G) = min
∀u∈G

{d(u)} . (1)

The average (or mean) node degree of G is

dmean(G) =
1

n

nX
u=1

d(u) . (2)

In an undirected graph we have dmean(G) = 2m/n [12].

3.2 Graph Connectivity
As illustrated in Fig. 2, a graph is said to be connected, if

for every pair of nodes there exists a path between them, and
otherwise it is disconnected [13]. In terms of communication
networks, all nodes of a connected network can communicate
with each other over one or multiple hops (links), whereas
in a disconnected network we have several islands of subnet-
works, whose nodes form a connected subgraph but cannot
reach other subnetworks.
Moreover, a graph is said to be k–connected (k =

1, 2, 3, . . .) if for each node pair there exist at least k mutu-
ally independent paths connecting them (see Fig. 2c, k = 2).
Equivalently, a graph is k–connected if and only if no set of
(k − 1) nodes exists whose removal would disconnect the
graph [13]. In other words, if (k − 1) nodes fail, the graph
is guaranteed to be still connected. The maximum value of
k for which a connected graph is k–connected is the connec-
tivity κ of G [13]. It is the smallest number of nodes whose
failure would disconnect G.
Similarly, a graph is called k–edge–connected if and only

if there are at least k edge–disjoint paths between every
pair of nodes. If a graph is k–connected, then it is also k–
edge–connected, but the reverse implication is not necessa-
rily true. The edge connectivity λ(G) is defined analogously
to the (node) connectivity κ(G).
For every graph with at least two nodes, we have κ(G) ≤

λ(G) ≤ dmin(G) [13].

4. ISOLATED NODES AND MINIMUM
DEGREE

4.1 Isolated Nodes
The existence of isolated nodes is certainly an undesir-

able characteristic of a wireless multihop network. In a
non–mobile wireless multihop network, e.g., a static sensor
network, an isolated node cannot exchange any information

with other nodes and is therefore useless for the entire com-
munity of nodes. In a mobile scenario, an isolated node
that wants to send or receive information must wait until
it moves into the range of another node or until another
node passes by. This might cause an unacceptable message
delivery delay.
Let us therefore consider the following range assignment

problem: A set of n nodes, each node with a transmission
range r0, are randomly uniformly placed in a large area A 	
r2
0π (node density ρ = n/A). What is the minimum range r0

such that, with high probability p, no node in the network
is isolated (i.e., each node has at least one neighbor).
To solve this problem, we employ nearest neighbor meth-

ods known from analysis of spatial data (see, e.g., [14]). Such
methods are used in many sciences to analyze certain point
patterns, for example, in ecology, forestry, and cosmology.
The distance of a point to its closest neighboring point is de-
noted as its nearest neighbor distance ξ. For a homogeneous
Poisson point process in two dimensions (constant intensity
ρ), the probability density function of the nearest neighbor
distance is (see [14], Chapter 8)

f(ξ) = 2πρ ξ · e−ρπξ2
for ξ > 0 (3)

with mean value (see Appendix A)

E(ξ) =

Z ∞

0

ξ p(ξ) dξ =
1

2
√

ρ
. (4)

In our application, a “random point” represents a “ran-
dom node” of the ad hoc network. Thus, the probability
that the distance between a randomly chosen node to its
nearest neighboring node is less than or equal r is

P (ξ ≤ r) =

Z r

ξ=0

f(ξ) dξ = 1− e−ρπr2
. (5)

If we set the range of all nodes to r = r0, Equation (5) de-
notes the probability that a node u has at least one neighbor,
i.e.,

P (d(u) > 0) = P (ξ ≤ r0). (6)

The probability that a node has no neighbor (i.e., it is iso-
lated) is therefore

P (d(u) = 0) = P (ξ > r0) = 1− P (ξ ≤ r0)

= e−ρπr2
0 . (7)

Our aim is to achieve a network graph G in which none of
the n nodes is isolated, i.e., d(u) > 0, ∀u ∈ G ⇔ dmin(G) >
0. Assuming statistical independence, the probability for
this event is

P (dmin > 0) =

 
n

n

!
P (d > 0)n P (d = 0)0

=
�
1− e−ρπr2

0
�n

. (8)

Figure 3 shows two example plots of this function over r0

and n for A = 106 m2 and A = 4 · 106 m2. We conclude this
section with the following theorem.

Theorem 1 (A probabilistic bound to avoid isolated nodes
in homogeneous ad hoc networks): Given is an ad hoc net-
work with n 	 1 nodes and a homogeneous node density ρ
in nodes per unit area. If we want to be sure, with a prob-
ability of at least p, that no node in this ad hoc network
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Figure 3: Probability that no node is isolated
P (dmin > 0)

is isolated, i.e., dmin ≥ 1, we can set the radio range of all
nodes to

r0 ≥
s

− ln (1− p1/n)

ρπ
. (9)

�

The following example illustrates the usefulness of this
equation.

Example 1 (Simulation of an ad hoc network): Image that
we perform a simulation–based study of an ad hoc network;
for example, we investigate the behavior of a distributed
leader election algorithm. A uniform random generator is
used to position n = 500 nodes in a simulation area of size
A = 1000 × 1000 m2, which yields a node density of ρ =
5 · 10−4 m−2. We would like to achieve that almost surely
no node in the network is isolated. To do so, we require a
probability of at least p = 99%. According to (9), we can set
the transmission range of all nodes to r0 = 83 m or higher
to achieve this goal.
If our nodes are only capable of transmitting r0 = 70 m,

we will need at least n = 728 nodes to achieve the same
confidentiality (also see Fig. 3a). In a scenario with n = 100
nodes in the same area, each node must cover a range of
r0 ≥ 172 m. Certainly, a higher range and/or more nodes
will be required if we use a larger area (Fig. 3b).

4.2 Minimum Node Degree
Until now we required that each node has at least one

neighbor. A generalization of this problem is to require that
each node has at least a certain number, say n0, neighbors.
In other words, the resulting network graph should have a
certain minimum degree dmin(G) ≥ n0 ⇔ min∀u∈G d(u) ≥
n0. A high node degree makes an ad hoc node more resistant
against failures of neighbors and links. Furthermore, in some
classes of ad hoc networks, there is an optimal number of
neighbors that each node should have, e.g., to achieve an
optimal throughput [15].
In the following, we derive a probabilistic expression that

allows us to calculate the critical radio range that is required
to achieve a certain dmin(G) for given n. Equivalently, we
can calculate the critical number of nodes n for given r0.
We first solve this problem on a one–dimensional line, and

then generalize the result for the two–dimensional case. Let
the random variable d denote the number of neighbors of a
node.

4.2.1 One–dimensional case
We consider the following homogeneous Poisson point

problem in one dimension (compare with [16], Section 3.4):
A number of n nodes are randomly uniformly positioned
in an interval [0, xmax]. What is the probability that n0

of these n nodes are located in the interval [x1, x2], where
0 ≤ x1 ≤ x2 ≤ xmax? The random variable d∗ denotes the
number of nodes within the given interval.
The probability that a node is placed within the interval

[x1, x2] is p = x2−x1
xmax

. The probability that n0 of n nodes

are placed in the interval [x1, x2] is

P (d∗ = n0) =

 
n

n0

!
pn0(1− p)n−n0 . (10)

For n 	 1 and (x2 − x1) � xmax, we can approximate
this solution with a Poisson distribution, i.e.,

P (d∗ = n0) =
(np)n0

n0!
· e−np (11)

for n0 in the order of x2−x1
xmax

n.
Let us now suppose large n and large xmax but keep the

ratio n/xmax constant. The density ρ = n/xmax is then the
expected number of nodes per unit length. For given density
ρ we can calculate the probability that n0 nodes are in an
interval of length x0 = x2 − x1 as

P (d∗ = n0) =
(ρx0)

n0

n0!
· e−ρx0 . (12)

The interval [x1, x2] could be a symmetric interval around
a randomly chosen position xp = x0

2
on the line, i.e.,

[x1, x2] =
�
xp − x0

2
, xp +

x0
2

�
. In general, xp does not ne-

cessarily represent the position of a node on the line. How-
ever, for large n, if we choose one node, the other (n − 1)
nodes are still uniformly distributed on the line. Thus,
Equation (12) also denotes the probability that a node has
n0 neighbors if the radio range is set to r0 = x0/2:

P (d = n0) =
(ρ 2r0)

n0

n0!
· e−ρ 2r0 . (13)

The probability that a node is isolated, i.e., it has no neigh-
bors is P (d = 0) = e−ρ 2r0 .
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4.2.2 Two–dimensional Case
The same problem in two dimensions is: what is the prob-

ability that n0 of all n nodes are within a certain area A0

in the system plane A? The entire system area A is for
example a large rectangular area or a disc.
To solve this problem, we can replace the system interval

[0, xmax] by the system area A and the subinterval x0 by a
subarea A0. The expected number of nodes per unit area is
then ρ = n

A
.

Analogous to (12), the probability of finding n0 nodes in
an area A0 is thus

P (d∗ = n0) =

�
A0
A

n
�n0

n0!
· e−

A0
A

n =
(ρA0)

n0

n0!
· e−ρA0 (14)

for large n and large A. A radio range r0 covers an area
A0 = πr2

0. Thus, the probability that a randomly chosen
node has n0 neighbors is

P (d = n0) =

�
ρ πr2

0

�n0

n0!
· e−ρ πr2

0 (15)

It is isolated with a probability of P (d = 0) = e−ρ πr2
0 (see

(7)). The expected number of neighbors of a node is

E(d) = ρ πr2
0, (16)

which is the average node degree dmean of the result-
ing graph. (It can also be calculated by E(d) =R r0

r=0

R 2π

φ=0
ρ(r, φ) r dr dφ.) Again, we consider all nodes of

the network and conclude with the following theorem.

Theorem 2 (A probabilistic bound for the minimum node
degree of a homogeneous ad hoc network): Given is an ad
hoc network with n 	 1 nodes, each with range r0, and
a homogeneous node density ρ in nodes per unit area. The
probability that each node has at least n0 neighbors, i.e., the
network has a minimum node degree dmin ≥ n0, is given by

P (dmin ≥ n0) =

 
1−

n0−1X
N=0

�
ρ πr2

0

�N
N !

· e−ρ πr2
0

!n

(17)

Figure 4 shows P (dmin ≥ 2) and P (dmin ≥ 3) over r0 and
n for an area of size 106 m2. The plot of P (dmin ≥ 1) has
been shown in Figure 3a.

�

Example 1 (continued): We continue the previous exam-
ple with n = 500 nodes on A = 106 m2. In order to achieve
an ad hoc network in which each node has almost surely
(p = 99%) at least two neighbors, a transmission range of
r0 > 93 m is required (Fig. 4a); a range r0 > 100 m is needed
to achieve three neighbors (Fig. 4b). In the latter case, the
average number of neighbors of a node is dmean = 15.7. If
the maximum transmission power allows the nodes to trans-
mit only r0 = 70 m, a set of n = 920 nodes must be used to
achieve P (dmin ≥ 2) > 99%.

4.3 Simulations and Discussion
Let us now verify these analytical results by computer sim-

ulation. In our simulation environment, a uniform random
generator [17] chooses the x and y coordinates of n = 500
nodes on a 1000 × 1000 m2 system area. For a given ra-
dio range r0, the links between the nodes are created, and
the minimum node degree dmin of the resulting network
topology is determined. This experiment is repeated 10 000
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Figure 4: Probability that each node has at least n0

neighbors, P (dmin≥n0), in a system area A = 106 m2

(e.g., 1000×1000 m2): Analytical curve over range r0

and nodes n0

times, and finally averaged over all 10 000 random topolo-
gies, which yields an acceptable confidentiality of the ob-
tained results. The resulting curves are shown in Figure 5a.
We observe that this simulation yields the same qualita-

tive behavior as the analytical plots shown in Figs. 3 and
4 — however, there is a significant quantitative difference.
In the simulation, a much higher transmission range is re-
quired to achieve the same P (dmin). For example, about
r0 = 105 m instead of 83 m is needed to create a network
with no isolated node.
Are our formulas wrong? No, they are not. The differ-

ence results from the fact that the simulation was done on
a bounded area, whereas our analytical derivation assumed
an infinite large area. In the simulation environment, nodes
located at the edges and borders of the area can only have
links toward the middle of the area. Thus, their node de-
gree is on average lower than that of nodes in the middle.
This border effect makes it impossible to compare the re-
sults of the simulation with the analytical formulas. In fact,
the analytical value for r0(p) (Theorem 1) is a lower bound
for the range that is required in a simulation environment,
and P (dmin ≥ n0) of Theorem 2 is an upper bound for the
probability that each node in the simulation has at least
n0 neighbors.
But there are methods to avoid such a border effect [14]. A
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Figure 5: Probability that each node has at least n0 neighbors, P (dmin≥n0); and prob. that the network is
k–connected, P (k–connected), both over r0. Simulation for 500 nodes on 1000× 1000 m2 (ρ = 5 · 10−4 m−2). The
usual Euclidian distance causes a border effect whereas a toroidal distance metric avoids this effect.

first avoidance method is to divide the entire simulation area
into two disjunct zones (as in [18]): a border zone Ab with a
width of at least r0 and an inner zone Aeff . Only nodes that
are located in the inner zone are considered for the statistics
of the simulations. In other words, links connecting an inner
node with a border node are only counted for the inner node.
A disadvantage of this method is that the number of nodes
that contribute to the statistics of the simulation decreases
with increasing r0. For example, a square simulation area
of size A = x2

max yields Aeff = (xmax−2r0)
2, r0 < xmax/2.

This results in a lower percentage of relevant nodes remain-

ing for evaluation, neff = n
Aeff

A
= n

�
1− 2r0

xmax

�2

, and

therefore increases the required simulation time for confi-
dent results.
A second approach to avoid this border effect is to model

the network topology in a way that nodes at the border are
considered as being close to nodes at the opposite border and
they are allowed to have links. Nodes at the right border
can have links to nodes at the left border, and, analogously,
nodes at the top can have links to nodes at the bottom.
In other words, we use a toroidal distance metric — the flat
simulation area becomes a torus [14]. Now, each node has
the same expected node degree. This method is used in the
following to compare the analytical curves with simulations.

Appendix B shows how the toroidal distance between two
nodes in the simulation area is calculated. Its value is always
smaller than or equal to the usual Euclidian distance.
Using toroidal distances between nodes, we repeated our

simulation. Figure 5b shows the results in comparison to the
analytical plots. Both curves match almost exactly, which
confirms Theorem 1 and 2.

5. CONNECTIVITY
We now go one step further and ask the question: What

is the minimum transmission range r0 such that, for given
ρ, the network is connected? The connectivity of a wire-
less multihop network is one of its essential characteristics.
It is often desired to achieve a connected network — both
in a real network implementation and in a simulation. For
example, several performance evaluations of routing proto-
cols for ad hoc networks assume a connected topology (see,
e.g., [19]).
The event dmin > 0 is a necessary (but not sufficient)

condition for a graph to be connected. Thus, the value for
a transmission range r0 calculated with Equation (9) repre-
sents a lower bound for the radio transmission range that
is needed to achieve a connected network. The same state-
ment can be made for networks with a certain minimum
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node degree, i.e.,

P (G is k–connected) ≤ P (dmin ≥ k) (18)

In other words, the implication (G is k–connected) ⇒
(dmin ≥ k) holds, but the reverse in not necessarily
true. However, we can derive a useful relation for the dis-
connectivity of a network. Since a network with at least one
isolated node is always disconnected, i.e., (dmin = 0) ⇒ (G
is disconnected), we can write

P (G is disconnected) ≥ 1− P (dmin > 0). (19)

Example 1 (continued): If we set r0 < 55 m in our exam-
ple scenario, the network will almost surely have an isolated
node (see Fig. 5b). It will therefore almost surely be dis-
connected. Concerning connectivity, all we can say is that
we need at least r0 = 83 m to achieve a connected network,
since this range results almost surely in a network with no
isolated node. However, we do not know how high we must
set r0 to achieve almost surely a connected network.

In practice, the upper bound for P (G isk–connected) does
not help much if we do not know how tight it is. (Actually,
a lower bound would be better.) In the following we show
that this upper bound is a very tight bound, in particular for
high probability values (which is certainly most interesting).
As a result, we can conclude that Equation (17) can be used
to calculate the range (or nodes density) that is needed to
achieve an almost surely k–connected network.

5.1 Analytical Derivation
The key issue to obtain this result is to represent the topol-

ogy of an ad hoc network as an undirected geometric ran-
dom graph, denoted as G(n, r). Let us first explain what a
random graph, a geometric graph, and a geometric random
graph is.

Definition 1: A random graph G(n, p) is a graph with n
nodes in which each possible link is independently included
with probability p.
The theory of random graphs is one the youngest research

branches in graph theory. It uses probabilistic methods to
solve problems in graph theory. Questions such as “what
properties do ’most’ graphs in various families have?” can
be answered. An introduction to random graphs can be
found in [13]; the books [20][21] cover their theory in detail.
The idea of modeling an ad hoc network as a random

graph was already discussed in [22]. However, as said in that
paper, the main obstacle in applying random graph theory
for ad hoc networks is that random graphs do not allow tak-
ing into account correlations between different links. For ex-
ample, if two ad hoc nodes u and v are physically very close
to each other, and another ad hoc node w is farther away,
the existence of the links (u, w) and (v, w) is expected to
be correlated in reality. Conventional random graph theory
cannot model this correlation. Thus, results on the connec-
tivity of random graphs, as presented in [20] (Chapter VII),
cannot be used for our problem. However, there also exists
the theory of geometric random graphs. The link between
this special kind of random graphs and ad hoc networks has
not been considered in [22].

Definition 2: Let the set of nodes V = {1, . . . , n} be a set
of points in a metric space and let ‖·‖ denote an arbitrary
distance norm in this space. A geometric graph G(V, r) with
radius r is a graph with node set V and the edge set E =
{ uv | (uv ∈ V ) ∧ (0 < ||u − v|| ≤ r}). In words, an

edge is connecting each pair of nodes that are separated by
a distance of at most r. Typically, in two dimensions, V
contains points in the unit square [0, 1]2 or unit disc, and
0 < r < 1 (see, e.g., [23]). The distance norm can be e.g. l2
(the Euclidian distance), l1 (Manhattan distance), or l∞
(chessboard distance).
We are now able to give two definitions of what we mean

by a geometric random graph (similar to [23, 24]).
Definition 3: A random geometric graph G(n, r) is a

geometric graph in which the n nodes are independently
and uniformly randomly distributed in a metric space. In
other words, it is a random graph in which the link existence
probability p between two nodes u and v is determined by
their geometric distance in a way that p = 1 for ‖u− v‖ ≤ r
and p = 0 otherwise.
If we use the standard Euclidian distance l2 in two–

dimensions, it is obvious that the topology of a homogeneous
ad hoc network can be represented as a random geometric
graph G(n, r) with r = r0.

Proposition 1: A homogeneous ad hoc network with n
nodes, each with transmission range r0, can be modeled as
a geometric random graph G(n, r0).
Now, we apply a result on the property of geometric ran-

dom graphs that was recently published in [24]. In this
article, Penrose proved that if n is high enough, then with
high probability, if one starts with an empty graph (i.e.,
only isolated nodes) and adds the corresponding links as
r0 increases, the resulting graph becomes k–connected at
the moment it achieves a minimum degree dmin of k. So,
for k = 1, the network becomes connected at the moment
where r0 is large enough to achieve dmin(G) > 0 with high
probability. In other words,

P (G is k–connected) = P (dmin ≥ k) (20)

for P (dmin ≥ k) almost one. In fact, Penrose’s theorem was
proven to be true for any lp metric in any dimension higher
than one, but it is not valid in one dimension [24].
This property of geometric random graphs is analogous to

a property of conventional (non–geometric) random graphs:
If links are added to an empty graph in an order cho-
sen uniformly from the

�
n
2

�
! possible node pairs, then with

high probability, for large n the resulting graph becomes k–
connected at the instant when it achieves a minimum degree
of k (see [13]).

5.2 Simulations and Discussion
Let us now investigate the connectivity behavior of homo-

geneous ad hoc networks by simulation and therefore prove
our analytical result. We repeat the experiment of Section 4
and now measure for each of the 10 0000 random topologies
the connectivity of the network (k = 1, 2, 3). The complex-
ity of our tests for connectedness and 2–connectedness is
O(n+m), the complexity of the test for 3–connectedness is
O(n(n + m)). Most of the following results required exten-
sive simulation time.
Figures 5c and d show the simulation results for n = 500

nodes on a simulation area A = 1000 × 1000 m2 using a
usual distance metric and a toroidal distance metric, re-
spectively. Applying the usual distance metric to link the
nodes again causes a border effect, since nodes at the border
are isolated with a higher probability and therefore the net-
work gets disconnected. The simulation with the toroidal
distance shows the desired result. For almost surely con-
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Figure 6: Simulation results for n = 1000 nodes uniformly distributed on A = 1000 × 1000 m2 (ρ = 10−3 m−2)

nected networks, i.e., P (G is k–connected) → 1, the prop-
erty P (G is k–connected) = P (dmin ≥ k) holds (compare
Fig. 5b and d).

Example 1 (continued): To achieve an almost surely con-
nected network, the same range is required as to achieve a
network with no isolated node (r0 > 83 m for toroidal dis-
tances). The range must be increased to r0 ≈ 100 m to
obtain a 3–connected network.
Also for lower connectivity probabilities, say between 0.8

and 1, the curve for P (dmin �= 0) serves as a good approx-
imation for P (G is connected). This is especially true for
k ≥ 2. For example, P (G is 3–connected) ≈ P (dmin ≥ 3)
holds for all probability values not just for P (dmin ≥ k) → 1.
Interestingly, the comparison of Fig. 5a and c shows us

that Equation (20) also seems to be valid in a bounded sim-
ulation area with border effects. In practice this means that
it is sufficient to find out the critical range (or density) that
almost surely creates a network with dmin ≥ k. This critical
value is then also the critical value for k–connectivity. How-
ever, in this case, the curves show a significant difference for
probabilities below 0.95%.
Another interesting observation is that the probability

of being k–connected changes rather fast from 0 to 1 as
r0 increases. Whereas a network with n = 500 nodes on
106 m2 is very unlikely to be connected for r0 = 60 m, a
little higher range (r0 = 75 m) yields an almost surely con-
nected network. This observation is in accordance with the

so–called “phase transition” phenomenon in random graph
theory (see [13], Chapter VII, and [25]). It says that most
standard properties of random graphs arise rather suddenly.
The same observation can be made if we increase ρ for a
given r0 (see Figs. 3 and 4).
Additional simulation results for n = 1000 on 1000 ×

1000 m2 (Fig. 6), n = 2000 on 2000 × 2000 m2 (Fig. 7),
and n = 100 on 800 × 800 m2 (Fig. 8), and r0 = 20 m on
500 × 500 m2 (see Fig. 9) underline all these observations,
and we can state the following theorem.

Theorem 3 (The probability for k–connectivity of a homo-
geneous ad hoc network): The probability that an ad hoc
network with n 	 1 nodes, each node with a transmission
range r0, and a homogeneous node density ρ is k–connected
is

P (G is k–connected) u P (dmin ≥ k) (21)

for P (dmin ≥ k) almost one. If border effects are eliminated,
we can calculate this probability as

P (G is k–connected) u P (dmin ≥ k) =

=

 
1−

k−1X
N=0

�
ρ πr2

0

�N
N !

· e−ρ πr2
0

!n

(22)

for high probabilities P (dmin ≥ k). From this equation, the
threshold value for the transmission range r0 (or the node
density ρ = n/A) required to achieve an almost surely k–
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Figure 7: Simulation results for n = 2000 nodes uniformly distributed on A = 2000× 2000 m2 (ρ = 5 · 10−4 m−2)
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Figure 8: Simulation results for n = 100 nodes uniformly distributed on A = 800×800 m2 (ρ = 1.5625 ·10−4 m−2)

connected network can be determined. For example, the
99%–contour lines in Figures 3 and 4 can be used to find
out critical (n, r0)–pairs.

�

In a bounded area with border effects, Equation (22)
serves as an upper bound for P (G is k–connected). In other
words, the threshold range (or density) that is required to
achieve a certain connectivity is always higher as in the case

without border effects.
Example 2 (Design of a large–scale wireless sensor net-

work): A wireless sensor network should cover an area of
size A = 500× 500 m2. Since all sensors exchange informa-
tion, e.g., for environmental monitoring, the network should
be connected. The sensors are equipped with transceivers
that transmit a range of r0 = 20 m in free space and do not
perform power control. How many sensors do we need to dis-
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Figure 9: Simulation results for n nodes with r0 =
20 m uniformly distributed on A = 500×500 m2, P (k–
connected), usual Euclidian distance, 3000 random
topologies (see Example 2)

tribute over the area? With (8) and (19), we can state that
a network with less than 1200 sensors on this area is almost
surely disconnected, and according to (22), we need about
2500 sensors to obtain with high probability a connected
network. Since the border effects of the real network im-
plementation decrease the connectivity, we need even more
sensors. A simulation with a usual Euclidean distance met-
ric (see Fig. 9) shows that n = 2500 creates a connected
network with a probability of p = 82.5%. If we distribute
3250 sensors, we will almost surely obtain a connected net-
work (p > 95%).

6. IMPACT OF MOBILITY
Our results on connectivity are also applicable in long–run

simulations with mobile nodes, provided that the network
consists of many nodes n 	 1 that are uniformly randomly
distributed over an area A 	 r2

0π at each time step. More
specifically, the used random mobility model must result
in a uniform node distribution, all nodes move randomly
and independently of each other, and their movement is not
bounded to a certain subarea. Let us discuss the applicabil-
ity of two common random mobility models in more detail
(see also [26]).
A very popular and frequently used mobility model in

ad hoc networking research is the random waypoint model
(see, e.g., [27, 28, 29, 30]). It is a straightforward stochas-
tic model that describes the movement behavior of a mobile
network node in a two–dimensional system area as follows:
A node randomly chooses a destination point in the area
and moves with constant speed to this point. After waiting
a certain pause time, it chooses a new destination, moves to
this destination, and so on. As shown in Fig. 10, this mo-
bility model does not result in a uniform node distribution.
The reason for this behavior is obvious: Nodes located at
the edges or borders of the simulation area are very likely
to move back toward the middle of the area. For example, a
node located at (x, y) = (100 m, 100 m) on a 1000×1000 m2

area chooses with much higher probability a new destination
point in the direction ϕ ∈]0, π

2
[ than a point toward a bor-

der or the edge. Most likely, it chooses a destination point
that requires the node to pass the middle of the simulation
area; in this example, ϕ = π

4
. Such a non–uniform node
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Figure 10: Spatial node distribution resulting from
the random waypoint mobility model (sim. results)

distribution makes it much more difficult to derive analyti-
cal connectivity results. Even if a toroidal distance metric
is used, the nodes at the border will on average have less
neighbors than nodes in the middle of the area.
An alternative to the random waypoint model is a sim-

ple random direction model (see, e.g., [26, 31]) in which
a new direction ϕ ∈ [0 . . . 2π[, rather than a destination
point, is chosen after a random time. The duration of these
movement epochs follow, for example, a negative exponen-
tial distribution. This model has approximately the same
complexity and programming effort as the random waypoint
model. Nodes always have a uniformly distributed angle
within [0 . . . 2π[. They can also cross the borders of the sim-
ulation area and should then be bounced back or “wrapped
around” to the other side of the area, which results in a uni-
form node distribution. Such a model should be preferred,
if a homogeneous distribution is desired.
If all assumptions are met, the probability values of a

static scenario can be interpreted as time in a mobile sce-
nario: For a total simulation time T , the network is ex-
pected to have a minimum degree dmin ≥ k during a time
P (dmin ≥ k) · T .

Example 1 (continued): We would like to investigate a
distributed algorithm in a mobile ad hoc network and require
that the network should be almost surely connected. The
n = 500 nodes move according to a random direction model
and “bounce back” when they reach the border of the A =
1000 × 1000 m2 system area. We choose r0 ≥ 83 m to be
sure that the network is connected for 99% of the simulation
time (toroidal distance metric). If we do not use a toroidal
distance metric, we can choose r0 ≥ 107 m in order to obtain
the same confidentiality (see Fig. 5c).
Note that these statements can be made for the given

network topology model of Section 2. If we use a more
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detailed radio propagation model, which considers effects
like Doppler shift, the connectivity will be influenced by the
mobility behavior of the nodes.

7. RELATED WORK
Before we conclude, let us compare our results with re-

lated papers. Cheng and Robertazzi [32] studied the per-
colation of a node’s broadcast in a multihop network. In
particular, they examined the influence of ρ and r0 on the
extend of the broadcast propagation. Philips et al. [33] dis-
cussed how the expected number of neighbors of a node must
grow with the system area to maintain connectivity. This
problem was resumed by Piret in [34] for one dimension. Re-
cently, Gupta and Kumar [35] have shown that if the radio
transmission range of n nodes in a disc of unit area is set to

r0 =
q

log n+c(n)

n π2 , the resulting wireless multihop network is

asymptotically connected with probability one if and only if
c(n) → ∞. They also obtained a necessary and a sufficient
condition on r0 for connectivity. Also Santi, Blough, and
Vainstein [11] analyzed the radio range assignment prob-
lem. Among others, they derived bounds for the probability
that a node is isolated — denoted as P (d = 0) in our paper.
Furthermore, they stated a lower bound for P (connected)
for nodes on a one–dimensional (bounded) line [0, xmax]:

P (connected) ≥ 1− (xmax − r0)

�
1− r0

xmax

�n

(23)

Two dimensional system areas have been considered by sim-
ulation.
Our paper employed geometric random graph theory and

various simulations to find the link between a multihop net-
work with isolated nodes and a connected topology. One
of our contributions is a convenient expression that enables
the determination of (r0, n) pairs that result in an almost
surely connected topology for a given area A. Moreover,
all related articles consider only 1–connectivity and isolated
nodes; none of them investigated k–connectivity (k > 1)
and dmin > 1, which has been treated in detail in this pa-
per. Also the impact of mobility has not been considered
before.
Another related article is written by Appel and Russo [36].

They perform a mathematical study of the asymptotic min-
imum node degree dmin of a graph on uniform points in d
dimensions for n → ∞. Chessboard distances between nodes
(the l∞ metric) are used to form the graph. In the case of
wireless networks, we must consider Euclidian distances and
also finite values of n.

8. CONCLUSIONS
This paper investigated the connectivity of a wireless

multihop network with homogeneous random node distribu-
tion. Among other things, we modeled the network as a ge-
ometric random graph and derived an analytical expression
that allows the determination of the required transmission
range r0 that creates, for a given node density ρ, an almost
surely k–connected network. Equivalently, if the maximum
range r0 of the nodes is given (e.g., say r0 = 250 m for wire-
less LANs), we can find out how many nodes of this type are
needed to cover a certain area with a k–connected network.
These problems have also been investigated by simulation
in various scenarios, with and without border effects.

Our results are of practical value for researchers and devel-
opers who perform simulations or design of static and mobile
ad hoc networks. For example, good simulation parameters
can be chosen to achieve a connected mobile ad hoc network
during most of the simulation time. Our results can also be
used in the implementation of real ad hoc systems, in partic-
ular, if topology control does not find application, because
low–cost nodes are used or it produces too much signaling
overhead and processing load in the nodes. If topology con-
trol methods are used, the calculated critical radio range
r0 could serve as a starting value. Finally, we would like to
note that the results of this paper are applicable to any kind
of multihop system (not only radio networks, but also, e.g.,
multihop underwater acoustic networks [37]).
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APPENDIX

A. Expected Nearest Neighbor Distance
The distance of a node to its closest neighboring node is de-
noted as its nearest neighbor distance ξ. For a homogeneous
Poisson process in R2, the probability density function of the

nearest neighbor distance is p(ξ) = 2πρ ξ e−ρπξ2
for ξ > 0

(Section 4). The expected value for ξ can be calculated as

E(ξ) =

Z ∞

0

ξ p(ξ) dξ = 2πρ

Z ∞

0

ξ2 e−ρπξ2
dξ .

Using the substitution ρπ = a and the solution of the defi-
nite integral Z ∞

0

ξbe−aξ2
dξ =

Γ
�

b+1
2

�
2a(

b+1
2 )

with the gamma function Γ (·), we obtain

E(ξ) =
Γ
�

3
2

�
√

ρπ
=

√
π/2√
ρπ

=
1

2
√

ρ
.

B. Toroidal Distance
A toroidal metric is used in this paper to eliminate border

effects (see Section 4). Let d
��

x1
y1

�
,
�

x2
y2

��
denote the usual

Euclidian distance between two points
�

x1
y1

�
and

�
x2
y2

�
on a

limited area [0, xmax] [0, ymax]. The toroidal distance is then
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�
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��
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where dT
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