
Mobile Matrix: A Multihop Address allocation and Any-To-Any
Routing in Mobile 6LoWPAN

Bruno P. Santos, Olga Goussevskaia, Luiz F. M. Vieira, Marcos A. M. Vieira, Antonio A.F. Loureiro

Computer Science Department, Universidade Federal de Minas Gerais – Brazil

{bruno.ps,olga,lfvieira,mmvieira,loureiro}@dcc.ufmg.br

ABSTRACT
In this work, we present Mobile Matrix, a routing protocol for

6LoWPAN that uses hierarchical IPv6 address allocation to perform

any-to-any routing and mobility management without changing

a node’s IPv6 address. In this way, device mobility is transparent

to the application level. �e protocol has low memory footprint,

adjustable control message overhead and achieves optimal routing

path distortion. Moreover, it does not rely on any special hardware

for mobility detection, such as an accelerometer. Instead, it provides

a passive mechanism to detect that a device has moved. We present

analytic proofs for the computational complexity and e�ciency of

Mobile Matrix, as well as an evaluation of the protocol through

simulations. Finally, we propose a new mobility model, to which

we refer as cyclical random waypoint mobility model, that we use

to simulate mobility scenarios, where communication is carried

out in environments with limited mobility, such as 6LoWPANs

deployed in o�ce buildings, university campuses, concert halls

or sports stadiums. Results show that µMatrix deliveries 3x times

more packets than RPL for top-down tra�c over high mobility

scenario.

CCS CONCEPTS
•Networks →Network protocol design; Network layer pro-
tocols;

KEYWORDS
Mobility; 6LoWPAN; IPv6; CTP; RPL; any-to-any routing;

ACM Reference format:
Bruno P. Santos, Olga Goussevskaia, Luiz F. M. Vieira, Marcos A. M. Vieira,

Antonio A.F. Loureiro. 2017. Mobile Matrix: A Multihop Address allocation

and Any-To-Any Routing in Mobile 6LoWPAN. In Proceedings of ACM
MSWiM, Miami Beach, USA, November 2017 (MSWiM ’17), 8 pages.

DOI: 10.475/123 4

1 INTRODUCTION
IPv6 over Low-power Wireless Personal Area Networks (6LoWPAN)

is an IETF working group that de�nes standards for low-power

devices to communicate with Internet Protocol. It can be applied

even to the small devices to become part of the Internet of �ings

(IoT). It has de�ned protocols, including encapsulation and header

compression mechanisms, that allow IPv6 packets to be sent and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MSWiM ’17, Miami Beach, USA
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00

DOI: 10.475/123 4

received over low-power devices. �ese protocols, such as CTP [11]

and RPL [20], typically build an acyclic network topology to collect

data, such as a tree or a directed acyclic graph. However, they do

not handle any-to-any communication or mobility [12].

Mobility is an important factor present in everyday life. It makes

life easier and turns applications more �exible. �e usage of many

devices for IoT can bene�t from it, as is the case of today adoption

of smartphones and tablets. By extending IoT protocols to handle

mobility, IoT becomes even more ubiquitous.

Matrix (Multihop Address allocation and dynamic any-To-any

Routing for 6LoWPAN) [17] is a platform-independent routing

protocol for dynamic network topologies and fault-tolerant any-to-

any data lows in 6LoWPAN. Matrix uses hierarchical IPv6 address

allocation and preserves bidirectional routing.

We present Mobile Matrix (µMatrix), a solution for handling

mobility in 6LoWPAN built upon the Matrix protocol. It provides

the bene�ts from Matrix, including any-to-any routing, memory

e�ciency, reliability, communication e�ciency, hardware indepen-

dence while dealing with mobility in an e�cient way. It enables

Matrix to be used in scenarios and applications where mobility is

present.

µMatrix handles mobility at the network layer, so the IPv6 ad-

dress of each node is assigned once and kept unchanged despite

mobility. In this way, routing and mobility management is transpar-

ent to the application level. �e proposed communication protocol

has low memory footprint, being suitable for low memory devices,

such as wireless sensor networks and IoT. Since there is an intrinsic

trade-o� between the delay to detect that a node has moved and the

number of control messages, µMatrix is able to tune the frequency

of control messages according to the application or the mobility

pa�ern. Moreover, µMatrix has optimal routing path distortion,

i.e., messages addressed to a mobile node, from anywhere in the

network, are sent along the shortest path from the source to its

current location, using its original IPv6 address.

To the extent of out knowledge, previous mobile routing pro-

tocols for 6LoWPAN have not used hierarchical IPv6 address allo-

cation, but a �at address structure, which incurs in more memory

consumption to store the bidirectional routes. On the other hand,

protocols for mobile ad hoc networks, like AODVand OLSR, have

high memory footprint and control message overhead, which makes

them not suitable for low power devices or 6LoWPAN.

�e main contributions of this paper can be summarized as fol-

lows. We present µMatrix, a communication protocol that performs

hierarchical IPv6 address allocation and manages routing and mo-

bility without ever changing a node’s IPv6 address. �e protocol

has low memory footprint, adjustable control message overhead

and achieves optimal routing path distortion. We provide analytic

proofs for the computational complexity and e�ciency of µMatrix,

MSWiM ’17, November 2017, Miami Beach, USA Bruno P. Santos et al.

as well as a an evaluation of the protocol through simulations.

An important building block of µMatrix is the passive mobility

detection mechanism that captures changes in topology without

requiring additional hardware (e.g. accelerometer or compass).

Moreover, we propose a new mobility model, to which we refer as

Cyclical Random Waypoint mobility model, that we use to simulate

mobility scenarios, in which communication nodes are assigned a

home location, and might make several moves in random directions,

connecting to the 6LoWPAN at di�erent a�achment points, and

eventually returning to their home locations. Our motivation for

proposing a new mobility model comes from application scenarios,

where communication is carried out in environments with limited

mobility, such as 6LoWPANs deployed in o�ce or school buildings,

university campuses or concert halls or sports stadiums.

Figure 1: µMatrix protocol’s architecture.

2 DESIGN OVERVIEW
�e objective of µMatrix is to enable any-to-any communication for

static and mobile nodes into 6LoWPANs. µMatrix preserves positive

aspects of the Matrix protocol, such as memory e�ciency and fault

tolerance, while providing a way to manage mobile nodes without

ever changing its IPv6 address. µMatrix works at the network layer

together with an underlying data collection protocol, such as CTP or

RPL. Figure 1 presents the protocol’s architecture, which is divided

into two planes: i) Control plane is responsible for partitioning

the address space; distributing and managing the route tables; and

handling mobile nodes, ii) Data plane is responsible for querying

the route tables and packet forwarding.

�e µMatrix protocol operation consists of the following phases:

1. Collection tree initialization (Ctree): a collection routing

tree is built by an underlying routing protocol (e.g CTP [11] or

RPL [13]);

2. Descendants convergecast, IPv6 tree broadcast: once the

collection tree is stable, the address hierarchy tree (IPtree) is built

using MHCL [16, 17]. �e resulting address hierarchy is stored

in the distributed IPtree, which initially has the same topology as

CtreeR , i.e., in top-down direction.

3. Mobilitymanagement: a�er the properly initialization, µMatrix

manages the RCtree , a tree that re�ects the topology changes

caused due to mobility.

4. Standard routing: bo�om-up routing follows the Ctree built in

phase 1, while top-down routing follows the IPtree . Any-to-any

routing is done by combining both previous schemes, i.e., a packet

can be forwarded bo�om-up until a Least Common Ancestor (LCA)

between the sender and receiver, and then forwarded top-down

until the destination.

2.1 Passive mobility detection
Trickle [14] is an adaptive algorithm to mitigate control message

overhead. However, the algorithm lacks in agility and e�ciency

to detect changes in a highly dynamic network with mobile nodes.

To support mobile nodes, we propose a Reverse Trickle timer that

operates similarly to the standard algorithm, but in reverse order.

Figure 2: Reserve Trickle timer operation.

Reverse Trickle introduce a control message and three param-

eters: i) hasMoved beacon; ii) Imax and Imin the maximum and

minimum time interval to send a hasMoved beacon; iii) Ik the num-

ber of a�empts to query a node before declaring a inconsistency.

�ese parameters must de�ned by the network operator before.

Figure 2 illustrates the reverse trickle timer procedure. First, it

starts with Imax interval between two consecutive hasMoved bea-

cons. �en, if the node did not receive an acknowledgment from

a hasMoved beacon, then it goes to Imin interval. A�er Ik unsuc-

cessful a�empts, the node declares a inconsistency and knows that

someone moved. �erefore, the node can take actions, for example,

properly perform a handover to another parent. Note that by set-

ting the Reverse Trickle parameters, the network operator should

consider the intrinsic trade-o� between delay to detect that a node

has moved and the number hasMoved beacons. For instance, for a

smaller delay to mobility detection, Imax must be tuned to small

values at cost of more hasMoved beacons. In our experiments (Sec-

tion 5) reverse trickle parameters were set according to application

data rate (Table 1).

Mobile Matrix MSWiM ’17, November 2017, Miami Beach, USA

In [15], the authors argue that a common modi�cation to sup-

port mobility is to change the control message periodicity. �e

typical approach uses a simple periodic timer or the standardized

Trickle timer. While reverse trickle waits for Imax +Tk × Imin to

detect a topology change, where Imin � Imax , the periodic and

standardized Trickle approaches wait for at least 2 × Imax .

2.2 Control Plane
2.2.1 Routing data structures. µMatrix maintains three routing

trees structures: i) Ctree: a collection tree built by the underlying

collection protocol; ii) IPtree: an IPv6 hierarchical tree built by

MATRIX initialization and kept static a�erward, except when new

nodes join the network; iii) RCtree: a tree re�ecting the topology

changes caused by node mobility.

Initially, IPtree = CtreeR and RCtree = ∅ (see Figures 3(a)(b)).

Whenever a topology change occurs due to mobility in one link in

Ctree , the new link is added into RCtree and maintained as long

as the change remain, therefore RCtree = CtreeR \ IPtree (see

Figures 3(c)(d)).

RCtree is not really a tree since it contains only reversed links

present in Ctree but not int IPtree . Nevertheless, its union with

links from IPtree is, in fact, a tree, which is used with as possible

alternative paths to downward routing.

Each node η keeps the following information in order to build

and maintain theses trees:

• CTparent(η): the ID of the current parent of a node η in

the dynamic collection tree;

• PRVparent(η): the ID of η’s previous CTparent(η).
• IPparent(η): the ID of the node that assigned η its IPv6

range initially CTparent(η) = IPparent(η);
• Mtable(η): the temporary alternative routing table for mo-

bility management with IPv6 addresses or ranges;

• IPchildren(η): the standard (top-down) routing table with

IPv6 ranges for one-hop descendants of η in IPtree;

µMatrix introduce two control messages and one meaningful

parameter: i) keepRoute beacon: sent by a node when a mobility

event occurs, keepRoute beacons helps µMatrix to create entries

in Mtable ; ii) δ : time between sending two consecutive keepRoute
beacons, which is choosen by the network operator; iii) rmBeacon
beacon: sent by a node to remove inconsistent routing info in

Mtable a�er a mobility event.

In mobile scenarios, entries in a Mtable are created and kept for

TTLmax (Time To Live) time-slots, where TTLmax is a parameter

de�ned by the network operator. �e entry is removed unless a

keepRoute beacon is received from the mobile node. In static sce-

narios any η node stores only one-hop neighborhood information

in IPparent(η), so the memory requirement is O(k), where k is

the number of node’s children. �is is be�er than current state-

of-the-art protocols, considering that literature top-down routing

mechanism, e.g. RPL, would need at least 1 routing entry for every

child in a node sub-tree.

2.2.2 IPv6 multihop host configuration. µMatrix relies on an un-

derlying collection routing protocol to build the Ctree . Once the

Figure 3: Trees maintained by µMatrix protocol: Ctree, IP-
tree, and RCtree.

Ctree is stable
1
, the address space available to the border router of

the 6LoWPAN, for instance, the 64 least-signi�cant bits of the IPv6

address (or a compressed 16-bit representation of the la�er), is hi-

erarchically partitioned among nodes in the Ctree . �e (top-down)

address distribution is preceded by a (bo�om-up) convergecast

phase, in which each node counts the total number of its descen-

dants and propagates it to its parent, thus node knows how many

descendants each child has. Such information is required to distrib-

ute IP ranges in a fairly way. As result of this procedure is obtained

the IPtree .

Figure 4 on the le� illustrates this process. First, the Ctree is

built (upwards arrows), and then, a�er the Ctree stabilization, the

convergecast phase occurs, which allows the nodes to be aware

of the size of theirs sub-tree (the percentage next to each node).

Finally, the root starts the IP distribution by auto-se�ing its IP (e.g.

the �rst IP of the available range), reserving a portion of the range

for later, and partitioning its range fairly between its children. Each

node repeats the IP distribution process.

2.2.3 Mobility management. Once host con�guration was al-

ready done, the Mobile Engine starts working, this allows nodes to

move around the 6LoWPAN. �e µMatrix Engine uses a �nite-state

machine (Figure 1 rightmost) with 4 states. Each node can be in

one of these states depending on its previous condition and on the

present knowledge about the node neighborhood. �e adaptive bea-

coning mechanism (Reverse Trickle Timer described in Section 2.1)

helps Mobile Engine to maintain in which state a node η is. In the

following, we present the Mobile Matrix operation.

Algorithm 1 shows in a simpli�ed pseudocode of Mobile Engine

routine. A�er µMatrix initialization, Mobile Engine starts with

Home Location as the initial state. In this case, the module only

starts the adaptive beaconing (line 3) with its IPparent(n) in order

to track movements. Whenever the reverse trickle detects a motion,

it sends a Someone Moved (SM) state to the Mobile Engine.

1
A node is stable if it reaches k times the maximum maintenance beacon period of

Ctree protocol without changing its parent. Trickle [14] was used as beacon scheme.

MSWiM ’17, November 2017, Miami Beach, USA Bruno P. Santos et al.

Figure 4: Simpli�ed hierarchical address assignment with 8-
bit available address space for an in-network node and 6.25%
of address reserve for delayed nodes. In the right, Mtable
a�er B moves.

On the SM state, a node is aware that someone moved, but it

does not know who moved (if it was itself or its current parent).

Mobile Engine triggers a routine to infer who moved (line 17).

�is information is essential to take the right decision in mobility

management, perform quickly a handover to anotherCTparent and

rebuild the routing structures.

�ere are, at last, two ways to a node automatically �nd out who

moved. �e �rst one, a node can actively query its children (if it

has anyone), if no one answer then the node moved, otherwise

the parent moved. �e second one, a node waits for a period (e.g.

one Imax) to receives queries (heartbeats) from its children and

then infer who moved. As soon as the node identify who moved,

it must moves towards NM or PM state according to if the node

or the parent moved respectively. We used the second one in our

implementation.

If a node µ moves, f indWhoMoved() (line 17) should inform to

Mobile Engine the state Node Moved (NM) as the newest state. In

this case, some actions are taken (see lines 19 to 32). First, all entries

in Mtable(µ)must be cleaned, because they must be outdated since

µ moves. �en, µ waits for a new parent. When µ is a�ached

again to the network, the Reverse Trickle is restarted, but now with

CTparent(µ) (a�er the movement). Also, startKR(…) routine start

sending keepRoute beacons (line 30) addressed to IPparent(µ) at

a rate of δ s. �e keepRoute beacon contains as payload only µ’s

IP. �ese beacons help to create entries in Mtable for nodes only

on the shortest path between CTparentf (µ) and IPparent(µ). For

instance, in Figure 4, a�er B (IP 16) moves, it goes to NM state, then

entries only in A and D are created to re�ect B’s new position.

As long as µ keeps moving and being a�ached to new parents,

µ remains in NM state (line 24) performing handovers. Whenever,

µ �nds another new parent , µ also sends a rmRoute beacon to its

previous PRVparent(η) (line 26) in order to quickly remove incon-

sistent temporary routes in Mtable for every node comprised in

the shortest path between CTparent(µ) and PRVparent(µ). When

new parent = IPparent(µ), then µ returned to home position in

IPtree , this trigger a rmRoutine(...) (line 8) to remove inconsistent

entries in Mtable of nodes comprised in the shortest path between

IPparent(µ) and PRVparent(µ).

Algorithm 1: Mobile Engine

(1) Func Main(newState):
(2) if newState = HL then
(3) startReverseTrickleTimer(I Pparent (n));
(4) if PRVparent (n) , � then
(5) rmRoute(PRVparent (n), {n .I P });
(6) PRVparent (n) = CTparent (n);
(7) end
(8) if previousState = NM then
(9) rmRoute(PRVparent (n), {n .I P });

(10) stopKR();

(11) else if previousState = PM then
(12) rmRoute(PRVparent (n), {n .I P, n .Ranдe });
(13) stopKR();

(14) end
(15) end
(16) if newState = SM then
(17) �ndWhoMoved();

(18) end
(19) if newState = NM then
(20) cleanMtable();

(21) while f indNewCTparent () = NU LL do
(22) triggerNewParent();

(23) end
(24) if newParent () , I Pparent (n) then
(25) if PRVparent (n) , {�} and

newParent () , PRVparent (n) then
(26) rmRoute(PRVparent (n), {n .I P });
(27) PRVparent (n) = CTparent (n);
(28) end
(29) restartReverseTricklerTimer(CTparent (n));
(30) startKR(I Pparent (n), {n .I P }, δ);

(31) end
(32) end
(33) if newState = PM then
(34) while f indNewCTparent () = NU LL do
(35) triggerNewParent();

(36) end
(37) if newParent () , I Pparent (n) then
(38) if I Pchildren(n) , {�} then
(39) startKR(n .I P, {n .I P, n .Ranдe }, δ);

(40) else
(41) startKR(n .I P, {n .I P }, δ);

(42) end
(43) if PRVparent (n) , {�} and

newParent () , PRVparent (n) then
(44) rmRoute(PRVparent (n), {n .I P });
(45) PRVparent (n) = CTparent (n);
(46) end
(47) restartReverseTricklerTimer(CTparent (n));
(48) end
(49) end
(50) return
(51) Func startKR(dest, payload, f):
(52) foreach δ time-slots do
(53) sendBeacon(dest, payload, type .KeepRoute)

(54) end
(55) return
(56) Func rmRotine(dest, payload):
(57) sendBeacon(dest, payload, type .rmRoute)

(58) return

A node η goes to Parent Moved (PM) state when its IPparent
moves. �is case, Mobile Engine triggers the underlying route dis-

covery mechanism. �en, as long as IPparent(η) is away from its

location, η remains in PM state sending periodically keepRoute bea-

cons, in which contains η IP and range if IPchildren(η) , {�}, and

only η IP otherwise (see lines 37 to 48). Note that, we use the η.IP as

Mobile Matrix MSWiM ’17, November 2017, Miami Beach, USA

destination in setartKeepRoute() routine, this is a trick to routing

messages towards η’s IPgrandparent, IPgreatgrandparent etc. As η
does not keep any information for more than one-hop, if η sends

beacons for its own IP toCTparent(η), then the beacons will �ow up-

wards untilLCA(CTparent(η), IPparent(...IPparent(IPparent(η))...)
and then downwards to some ancestors of η (see Section 2.3 to un-

derstand any-to-any routing). When IPparent(η) returns to home

location in IPtree , η must trigger rmRoute(...) routine (line 11) to

remove inconsistent states in Mtable of nodes comprised in the

shortest path between IPparent(η) and PCTparent(η).
In Figure 4, when B moves, E and F go to PM state. �en, only

one entry in F, C and A need to be created to rebuild the path for the

whole sub-trees of E and F. Note that, as E and F have contiguous

range, then A and C can aggregate them into one entry.

2.2.4 Loop avoidance. Handle loops is a hard task for µMatrix

since it relies directly on underlying collection protocol. Such

protocols are not loop-free, but they can identify them and try to

recover from it [11, 13]. µMatrix identify loops when a control

message is received more than once in a too short time. But, what

is a short time? Each entry in the Mtable has a Time Has Lived

(THL) �eld, therefore, if a node receives a duplicate control message

in a timeTHL < t � δ , where t is de�ned by the network operator,

then it should be a loop. We set t = 1 s. When loops happen, then

the node suppress the beacon. Also, there is in keepRoute beacon

a Time To Live (TTL) �eld. �us, µMatrix uses both THL and TTL

to remove inconsistent routes and messages from the network.

2.3 Data Plane: any-to-any routing
�e Forwarding Engine (see Figure 1) is responsible for data for-

warding. Any-to-any routing is performed by combining bo�om-up

forwarding, until the LCA between the sender and receiver, and

then top-down forwarding to the destination. Upon receiving a data

packet, each node η checks whether the destination matches with

an entry e ∈ Mtable(η): if yes then the packet is forwarded accord-

ing, otherwise, η checks if the destination fall within some range

in r ∈ IPchildren(η), if yes the packet is forwarded downwards

properly. Finally, if the previous a�empts fail, then the packet is

forwarded (upwards) to CTparent(η).

3 COMPLEXITY ANALYSIS
For the formal analysis, we assume a synchronous communication

message-passing model with no faults. �us, all nodes start exe-

cuting the algorithm simultaneously and the time is divided into

synchronous rounds, i.e., when a message is sent from node v to

its neighbor u in time-slot t , it must arrive at u before time-slot

t + 1, and d(v,u) is the shortest path length between v and u in

Ctree ∪ IPtree ∪ RCtree . �e performance of µMatrix in faulty

scenarios is analyzed through simulations in Section 5.

3.1 Memory footprint
As described in Section 2, the temporary routing information needed

to manage mobility is stored in the Mtable data structure of some

nodes. Each entry is kept for at mostTTLmax seconds, a time inter-

val pre-con�gured by the network operator, and is deleted unless a

keepRoute beacon is received. In the following theorem, we bound

the total number of Mtable entries in the network, necessary to

manage routing of each mobile node µ ∈ CTree .

Theorem 3.1. �e memory footprint to manage the mobility of
one node µ ∈ Ctree with µMatrix isM(µ) = O(depth(Ctree)).

Proof. Consider a node µ ∈ Ctree that has moved from its

home location in time-slot t0 and returned in time-slot tf . Consider

the (permanent) IPparent(µ) and the (temporary) CTparenti (µ) in

time-slot t0 < ti < tf . A routing entry for the temporary location of

µ will be stored in theMtable of every node comprising the shortest

path between IPparent(µ) and CTparenti (µ). Moreover, if µ has

descendants in the IPtree, i.e, k(µ) = |IPchildren(µ)| > 0, then each

node c ∈ IPchildre(µ) will send a temporary (bi-directional) route

request to their respectiveCTparenti (c), and a (temporary) routing

entry will be stored in the Mtable of every node comprising the

shortest path between CTparenti (c) and IPparent(µ). �erefore,

the total memory footprint to manage the mobility of a node µ is:

M(µ) = d(CTparenti (µ), IPparent(µ)) + 1

+
∑

c ∈I Pchildren(µ)
(d(CTparenti (c), IPparent(µ)) + 1)

≤ (k(µ) + 1) × (depth(Ctree) + 1)
= O(depth(Ctree)) �

�eorem 3.1 implies that the total memory footprint to manage

the mobility ofm nodes is O(m × depth(Ctree)). Note that µMatrix

preserves locality when managing mobile routing information of

a node µ, since no Mtable needs to be updated at nodes above the

LCA(IPparent(µ),CTparent(µ)).

3.2 Control message overhead
Control messages used by µMatrix are comprised of three types:

(1) those used by Matrix to set up the initial IPtree and address

allocation; (2) hasMoved beacons, de�ned in Section 2.1; and (3)

keepRoute beacons, de�ned in Section 2.2.1.

For any network of size n with a spanning collection tree Ctree

rooted at node r , the message and time complexity of Matrix pro-

tocol in the address allocation phase is Msд(Matrix I P (Ctree))
= O(n) and T(Matrix I P (Ctree)) = O(depth(Ctree)), respectively,

which is asymptotically optimal, as proved in [17]. Next we bound

the number of control messages of type (2) and (3).

Theorem 3.2. Consider a network with n nodes, with a spanning
collection tree Ctree rooted at node r , andm mobility events, consist-
ing ofm nodes µi , changing location during time intervals ∆i ≤ ∆
time-slots. Moreover, consider the hasMoved beacon parameters Imin ,
Imax and Ik and the keepRoute beacon interval of δ time-slots. �e
control message complexity of µMatrix to perform routing under mo-
bility ofm nodes is

Msд(µMatrix(Ctree)) = O

(
m × Ik
Imin

+
n

Imax

)
+ O

(
m × ∆
δ

depth(Ctree)
)
.

Proof. Firstly, we bound the number of hasMoved beacons,

which are sent periodically by all nodes in order to detect mobility

events. As described in Section 2.1, when there is no mobility, the

MSWiM ’17, November 2017, Miami Beach, USA Bruno P. Santos et al.

periodicity of hasMoved beacons is 1/Imax . If some node µ has

moved (an ack is lost), then Ik messages are sent in intervals of

Imin time-slots. Using the fact that the network is a tree and the

number of edges is O(n), this gives a total of messages

Msд(µMatrixhM(Ctree)) = O
(
m × Ik
Imin

+
n

Imax

)
.

Now, we bound the number of keepRoute beacons. As de-

scribed in Section 2, mobile nodes send periodic keepRoute bea-

cons at a frequency of δ to keep the Mtables up-to-date. Con-

sider a node µ ∈ Ctree that has moved from its home location in

time-slot t0 and returned in time-slot tf . Consider the IPparent(µ),
CTparenti (µ) in time-slot t0 < ti < tf , and ∆ = tf − t0. When µ is

a�ached to a CTparenti (µ), µ sends keepRoute beacons at a rate

of δ for at most ∆ time-slots, such beacons travel the shortest path

|(CTparenti (µ), IPparent(µ))| ≤ 2 × depth(Ctree). Furthermore, if

µ has descendants, i.e., k(µ) = |IPchildren(µ)| > 0, then each node

c ∈ IPchildren(µ) will also send keepRoute beacons at a rate of δ
for at most ∆ time-slots, such beacons will travel the shortest path

|(CTparenti (c), IPparent(µ))| ≤ 2 × depth(Ctree). �erefore, the

total control overhead to manage the mobility of a node µ is ≤ 2

×depth(Ctree)(k(µ) + 1)∆/δ , which results in

Msд(µMatrixkR(Ctree)) = O
(
m × ∆
δ

depth(Ctree)
)
.

Finally, the total control overhead is bounded by:

Msд(µMatrix) =Msд(µMatrixhM) +Msд(µMatrixkR) �

Once again µMatrix preserves locality when managing mobile

routing state of a node µ, since no messsage needs to be sent to

nodes above the LCA(IPparent(µ),CTparent(µ)).

3.3 Routing path distortion
We analyze the route length of messages, addressed to mobile nodes.

Consider the underlying collection protocol (e.g. CTP or RPL),

which dynamically optimizes the (bo�om-up, or upwards) links in

the collection tree CTree , according some metric, such as ETX. We

de�ne an optimal route length as the length of the shortest path

between (s,d), comprised of the upwards links of the collection tree

CTree and the downwards links of the union of the IPv6 address

tree and the reverse-collection tree, i.e., IPtree ∪ RCtree .

Theorem 3.3. µMatrix presents optimal path distortion under
mobility, i.e., all messages are routed along shortest paths towards
mobile destination nodes.

Proof. Consider a mobile node µ ∈ CTree , which has moved

from its home location in time-slot t0. Messages addressed to µ and

originated by some node η ∈ Ctree in time-slot ti > t0 can belong

to tra�c �ows of three kinds: (1) bo�om-up: LCAi (µ,η) = µ; (2)

top-down: LCAi (µ,η) = η; and (3) any-to-any: LCAi (µ,η) , µ , η.

In case (1), messages are forwarded using the underlying collection

protocol, using the upwards links of the collection tree CTree, which

is optimal. In case (2), messages are forwarded using Mtables of η
and its descendents, until reaching the mobile location of µ in some

time-slot tf > t0. �is path is comprised of the downwards links

of IPtree ∪ RCtree in time-slot t0 < ti ≤ tf , which is the optimal

route from η to the mobile location of µ in that time-slot. In case

(3), the route between η and LCAi (µ,η) falls into the case (1) and

the route between LCAj (µ,η) and µ falls into the case (2), for some

t0 < ti ≤ tj ≤ tf , which is optimal. �

4 CRWP MOBILITY MODEL
Here, we propose the Cyclical Random Waypoint Mobility Model

(CRWP), a mobility model based on the Random Waypoint [2].

CRWP is useful to model scenarios where some of the entities

move to di�erent destinations and eventually they return to their

initial positions. �is is the case of people and their portable devices

in o�ces, universities, hospitals, factories, etc.

In CRWP, the entities move independently to random destina-

tions and speeds as in RWP. When an entity arrives at the des-

tination, it stops for a given time Tpause . A di�erence in CRWP

is that a�er n destinations are chosen, the mobile entity returns

to its initial position. Besides that, only k % of mobile entities are

outside of their initial position in each instant of time. CRWP has

four parameters: i) PerMobNodes: maximum percentage of entities

that are mobile in each instant of time; ii) Stops: number of stops

that the mobile entity do before returning to its original position;

iii) Speed: speed which the mobile entity moves; iv) Tpause : the

amount of time that the entity stays in a destination position.

5 SIMULATION RESULTS

Table 1: Simulation parameters
Simulation parameter Values
Simulation time 1.5 h

Nodes 1 center root, 100 nodes in grid

Mobility Model CRWP

Application data packets 20 pkt/node, Rate = 1 pkt/min

Radio environment 50 m UDGM constant loss

Area of deployment 400 m ×400 m

Reverse Trickle Imax = 60 s, Imin = 1 s, Ik = 3

RPL Trickle Imax = 60 s

keepRoute beaconing period δ = 60 s

Mtable TT Lmax = 90 s, Size = 20 entries

RPL downwards table Size = 20 entries

mobility traces 10 traces/scenario

Number of experiments 10 runs/trace

Node Speed constant 4 m/s

Tpause constant 300 s

node stops Uniform Dist. in [1, 3] stops

Low Moderate High
PerMobNode 5% 10% 15%

µMatrix was implemented as a subroutine of collection protocol

available in ContikiOS [6] and the experiments were simulated on

Cooja [8]. We compare µMatrix with ContikiOS’ RPL implementa-

tion. We use the BonnMotion [1] to implement CRWP as well as to

generate and analyze mobility traces. We simulated four di�erent

scenarios. �e �rst scenario represents the static network, in which

nodes do not move. �e remaining represent mobility scenarios

named low, moderate, and high with mobile nodes. Table 1 lists the

default simulation parameters used for each scenario.

On top of the network layer, we ran an application, in which

each node sends 20 data packets to the root. Upon receiving a data

packet, the root con�rms to the sender with an ack packet that

Mobile Matrix MSWiM ’17, November 2017, Miami Beach, USA

has the size of a data packet. �e application waits for 10 min for

protocols initialization and stabilization before it starts sending data.

�e nodes start sending their data in a simulation time randomly

chosen in (10, 20] min. �e mobility traces were con�gured to start

a�er the stabilization time. Additionally, we generate 10 mobility

traces for each scenario. Each trace and the static scenario were

run 10 times, totaling 3010 runs. In each plot, the bars represent

the average, the error bars the con�dence interval of 95 %, and the

curves the maximum table usage for a given mobility scenario.

Table 2: Mobility Metrics
Mobility Metrics Low Mob. sce. Mod. Mob. sce. High Mob. sce.

Avg. Link Breaks 1621 3057 4838

Avg. Link duration 761.90 457.4 345

Avg. Degree 4.12 4.36 4.44

Avg. Time to link break 227.6 216.1 204.5

Mobility scenario: We simulated a scenario, wheren = 100 people

are assumed to be in an o�ce and can move around and return to

a prede�ned home position. �is scenario is expected to present

relatively low mobility, thus in our set up k % of the nodes are

moving at any moment in time, where k ∈ {5%, 10%, 15%}. Table 2

presents some mobility metrics [1] for each scenario. We highlight

that link breaks play a key role in the performance of the network

protocol, note that high mobility scenario presents up to 20 % more

topology changes than in low mobility. As expected, the average

link duration decrease when PerMobNode increases. �e averages

of node degrees and the time to a link break do not show much

variability, they re�ect the simulation parameters, where the node

deployment is a grid and time for a link to break is less thanTpause .

5.1 Results

Figure 5: CDF of routing table usage. For µMatrix Mtable +
IPchildren, for RPL only downwards routing table. �e max-
imum table size is 20.

In Figure 5, we show the Cumulative Distribution Functions

(CDFs) of the percentage of downward routing table usage among

nodes for given mobility scenario. Note that in static scenario,

for µMatrix all nodes use up to 25% of available downwards route

entries, while for RPL < 75% of nodes use up to 25% of entries,

indeed, for some RPL nodes, 100% of table entries are used. Usually,

those nodes that use more memory are located near to the root

and they play a key role in top-down routing. If they have a full

downward routing table, then the tra�c pa�ern top-down su�ers

from poor reliability, and some nodes may be unreachable. In

mobility scenarios, µMatrix also presents more e�cient memory

footprint, the di�erence grows up in high mobility scenarios, where

> 50% of RPL nodes have all table entries busy, while µMatrix nodes

use at most 70% of downwards available routes.

Figure 6(a) shows the amount of control tra�c overhead of the

protocols (the total number of beacons sent during the entire sim-

ulation). RPL sends fewer control packets than µMatrix, but the

di�erence between them does not exceed 7.4%. µMatrix sends more

beacons in order to quickly react to topology changes. Most of the

µMatrix beacons are �red by Reverse Trickle, which can be con-

�gured to reduce the sending beacons. Note that the adjustment

reverse trickle faces a trade-o� between fast mobility discovery

and control overhead. In Table 1, we set Imax of RPL and µMatrix

evenly and close to data packet rate. �is gives the protocols the

opportunity to identify topology changes and react upon them. In

the following, we show the protocol performance for data delivery.

Packets Reception Rate (PRR) is a metric of network reliability. It

is computed as the number of packets received successfully over all

packets sent. Figure 6(b) shows the PRR in bo�om-up data tra�c.

In all scenarios, µMatrix presents higher PRR rate than RPL. When

µMatrix realizes that a topological change happened, it quickly

triggers the underlying route discovery, consequently bo�om-up

routes are quickly rebuilt and the reliability increases.

Figure 6(c) shows the PRR for top-down data tra�c. We can see

that, when there is no mobility, µMatrix presents 99.9% of success

rate. In mobility scenarios, µMatrix PRR decreases slowly when

more mobility is allowed. In the harshest mobility scenario, the

PRR > 75%. RPL, on the other hand, su�er from poor reliability,

delivering < 21.1% in all simulated scenarios, which occurs due the

lack of memory (see Figure 5) to store top-down routes.

6 RELATEDWORK
In the world of tiny (IoT) several mobility-enabling routing proto-

cols have been proposed. Firstly we highlight µMatrix’s features

against its original static version [17]. �en, we survey recent pro-

tocols in the context of 6LoWPAN and put them in perspective with

µMatrix.

Matrix was originally proposed without support for mobility[17].

If a node moved from its home location, the hierarchical IPv6 ad-

dress allocation would become invalid and compromise downward

routing.Although RPL [20] is the standard protocol for 6LoWPANs,

it presents limitations, for example, in mobility scenarios, scal-

ability issues, reliability and robustness for point-to-multipoint

tra�c [12, 17]. Most recent mobile-enabled routing protocols are

RPL extensions. �ey deal with mobile issues, but they do not han-

dle RPL drawbacks. Co-RPL [10] provides mobility support to RPL

MSWiM ’17, November 2017, Miami Beach, USA Bruno P. Santos et al.

(a) Number of control packets (b) Bo�om-up routing success rate. (c) Top-down routing success rate.

Figure 6: Simulation experiments

but without Trickle. �is turns Co-RPL more responsive but has

higher overhead. MMRPL [4] modi�es the RPL beacon periodicity

by replacing the Trickle mechanism with a Reverse Trickle-Like.

�eir Reverse Trickle decays exponentially, while our approach

quickly goes to the minimum a�er an unacknowledged beacon.

MMRPL also needs some static nodes. In ME-RPL [7], static nodes

have higher priority than mobile ones. When a node is detached

from a parent, it sends DIS messages in dynamic intervals. ME-RPL

requires some �xed nodes. �e memory requirement to downward

routes is still prohibitive. mRPL [9] proposes a hand-o� mechanism

for mobile nodes in RPL by separating nodes into mobile (MN) or

serving access point (AP). �ey use smart-HOP algorithm on MN

nodes to perform hand-o� between AP.

XCTP [19] extends CTP to support bidirectional tra�c. XCTP

does not support IPv6 addressing and any-to-any tra�c. Hydro [5]

�lls the gap of any-to-any tra�c, but it requires static nodes with a

large memory to perform the routing and support mobility nodes.

Mobile IP [18] and Hierarchical Mobile IPv6 (HMIPv6) Mobility

Management [3] are standards for IPv6 networks for handling local

mobility. However, they are not designed for 6LoWPANs, they do

not present a mobility detection or adjustable timers.

Table 3 summarizes properties of the related protocols.

Table 3: Routing protocol properties
Feature µMatrix RPL Co-RPL MMRPL ME-RPL mRPL DMR Hydro XCTP

Bo�om-p " " " " " " " " "

Top-down " " " " " " " "

Any-to-any " " " " " " "

Address Allocation "

IPv6 support " " " " " " "

Memory e�ciency "

Fault Tollerance " "

Local Repair "

Topological changes

Reverse

Trickle

Trickle

Periodic

�xed

Reverse

Trickle-like

Trickle Trickle Trickle Periodic �xed Trickle

Constraints

Nodes should

return to

home location

Need static

nodes

Need static

nodes

Need static

nodes

Need static

nodes

Need static

nodes

7 CONCLUSIONS
In this work, we presented µMatrix: a memory e�cient routing pro-

tocol for 6LoWPAN that performs any-to-any routing, hierarchical

address allocation and mobility management. As a building block of

µMatrix, we proposed a passive mobility detection mechanism that

captures topological changes without requiring additional hard-

ware. Finally, we introduced the CRWP, a mobility model suited for

scenarios with mobile nodes that have cyclical movement pa�erns.

As future work we plan to run experiments with physical devices

and extend experimental evaluation to more mobile models, such

as faulty communications scenarios.

Acknowledgements: We thank CAPES, CNPq and FAPEMIG.

REFERENCES
[1] Nils Aschenbruck, Raphael Ernst, Elmar Gerhards-Padilla, and Ma�hias

Schwamborn. 2010. BonnMotion: a mobility scenario generation and analysis

tool. In EAI ICST. 51.

[2] Fan Bai and Ahmed Helmy. 2004. A survey of mobility models. Wireless Adhoc
Networks (2004).

[3] Ludovic Bellier, Karim El Malki, Claude Castelluccia, and Hesham Soliman. 2008.

Hierarchical Mobile IPv6 (HMIPv6) Mobility Management. RFC 5380. (2008).

[4] Cosmin Cobarzan, Julien Montavont, and �omas Noel. 2014. Analysis and

performance evaluation of RPL under mobility. In IEEE ISCC. 1–6.

[5] S. Dawson-Haggerty, A. Tavakoli, and D. Culler. 2010. Hydro: A hybrid routing

protocol for low-power and lossy networks. In IEEE SmartGridComm. 268–273.

[6] Adam Dunkels, Bjorn Gronvall, and �iemo Voigt. 2004. Contiki-a lightweight

and �exible operating system for tiny networked sensors. In IEEE LCN. 455–462.

[7] Inès El Korbi, Mohamed Ben Brahim, Cedric Adjih, and Leila Azouz Saidane.

2012. Mobility enhanced RPL for wireless sensor networks. In IEEE ICUFN. 1–8.

[8] Joakim Eriksson, Fredrik Österlind, Niclas Finne, Nicolas Tsi�es, Adam Dunkels,

�iemo Voigt, Robert Sauter, and Pedro José Marrón. 2009. COOJA/MSPSim:

Interoperability Testing for Wireless Sensor Networks. In Simutools’09. 1–27.

[9] Hossein Fotouhi, Daniel Moreira, and Mário Alves. 2015. mRPL: Boosting mobil-

ity in the Internet of �ings. (2015), 17–35 pages.

[10] Olfa Gaddour, Anis Koubâa, Raghuraman Rangarajan, Omar Cheikhrouhou,

Eduardo Tovar, and Mohamed Abid. 2014. Co-RPL: RPL routing for mobile low

power wireless sensor networks using Corona mechanism. In IEEE SIES.

[11] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, Maria Kazandjieva, David

Moss, and Philip Levis. 2013. CTP: An e�cient, robust, and reliable collection

tree protocol for wireless sensor networks. ACM TOSN 10, 1 (2013), 16.

[12] O. Iova, P. Picco, T. Istomin, and C. Kiraly. 2016. RPL: �e Routing Standard for

the Internet of �ings… Or Is It? IEEE Communications Magazine 54 (December

2016), 16–22.

[13] Kevin C Lee, Raghuram Sudhaakar, Lillian Dai, Sateesh Addepalli, and Mario

Gerla. 2012. RPL under mobility. In IEEE CCNC. IEEE, 300–304.

[14] Philip Levis, Neil Patel, David Culler, and Sco� Shenker. 2004. Trickle: A Self-

regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor

Networks. In USENIX NSDI. 2–2.

[15] Afonso Oliveira and Teresa Vazão. 2016. Low-power and lossy networks under

mobility: A survey. Computer Networks (2016).

[16] Bruna Peres and Olga Goussevskaia. 2016. MHCL: IPv6 Multihop Host Con�gu-

ration for Low-Power Wireless Networks. arXiv:1606.02674 (2016).

[17] Bruna S. Peres, Otavio A. de O. Souza, Bruno P. Santos, Edson R. Araujo Junior,

Olga Goussevskaia, Marcos A. M. Vieira, Luiz F. M. Vieira, and Antonio A. F.

Loureiro. 2016. Matrix: Multihop Address Allocation and Dynamic Any-to-Any

Routing for 6LoWPAN. In ACM MSWiM. 302–309.

[18] Charles Perkins, David Johnson, and Jari Arkko. 2011. Mobility support in IPv6.

(2011).

[19] Bruno P Santos, Marcos AM Vieira, and Luiz FM Vieira. 2015. eXtend collection

tree protocol. In IEEE WCNC. 1512–1517.

[20] T. Winter, P. �ubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J.

Vasseur, and R. Alexander. 2012. RPL: IPv6 Routing Protocol for Low-Power and

Lossy Networks. RFC 6550. (2012).

