
Computer Networks 140 (2018) 28–40

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Matrix: Multihop Address allocation and dynamic any-To-any Routing

for 6LoWPAN

Bruna Peres ∗, Bruno P. Santos, Otavio A. de O. Souza, Olga Goussevskaia, Marcos A. M.
Vieira, Luiz F. M. Vieira, Antonio A. F. Loureiro

Computer Science Department, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos 6627, Belo Horizonte, MG, Brazil

a r t i c l e i n f o

Article history:

Received 30 September 2017

Revised 18 April 2018

Accepted 20 April 2018

Available online 1 May 2018

Keywords:

6LoWPAN

IPv6

CTP

RPL

Any-to-any routing

Fault tolerance

a b s t r a c t

Standard routing protocols for IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) are

mainly designed for data collection applications and work by establishing a tree-based network topol-

ogy, enables packets to be sent upwards, from the leaves to the root, adapting to dynamics of low-power

communication links. In this work, we propose Matrix, a platform-independent routing protocol that uti-

lizes the existing tree structure of the network to enable reliable and efficient any-to-any data traffic in

6LoWPAN. Matrix uses hierarchical IPv6 address assignment to optimize routing table size while pre-

serving bidirectional routing. Moreover, it uses a local broadcast mechanism to forward messages to the

right subtree when a persistent node or link failures occur. We implemented Matrix on TinyOS and eval-

uated its performance both analytically and through simulations on TOSSIM. Our results showed that

the proposed protocol is superior to available protocols for 6LoWPAN when it comes to any-to-any data

communication, concerning reliability, message efficiency, and memory footprint.

© 2018 Elsevier B.V. All rights reserved.

—

n

r

d

t

T

a

m

r

M

n

f

d

i

t
1. Introduction

IPv6 over Low-power Wireless Personal Area Networks (6LoW-

PAN

1) is a working group inspired by the idea that even the small-

est low-power devices should be able to run the Internet Protocol

to become part of the Internet of Things. The main function of a

low-power wireless network is usually some sort of data collec-

tion. Applications based on data collection are plentiful, examples

include environment monitoring [1] , field surveillance [2] , and sci-

entific observation [3] . In order to perform data collection, a cycle-

free graph structure is typically maintained and a convergecast is

implemented on this network topology. Many operating systems

for sensor nodes (e.g. Tiny OS [4] and Contiki OS [5]) implement

mechanisms (e.g. Collection Tree Protocol (CTP) [6] or the IPv6

Routing Protocol for Low-Power and Lossy Networks (RPL) [7]) to

maintain cycle-free network topologies to support data-collection

applications.
∗ Corresponding author.

E-mail addresses: bperes@dcc.ufmg.br (B. Peres), bruno.ps@dcc.ufmg.br (B. P.

Santos), oaugusto@dcc.ufmg.br (O.A. de O. Souza), olga@dcc.ufmg.br (O. Gous-

sevskaia), mmvieira@dcc.ufmg.br (M.A. M. Vieira), lfvieira@dcc.ufmg.br (L.F. M.

Vieira), loureiro@dcc.ufmg.br (A .A . F. Loureiro).
1 We use the acronym 6LoWPAN to refer to Low power Wireless Personal Area

Networks that use IPv6.

n

c

g

s

t

s

c

https://doi.org/10.1016/j.comnet.2018.04.017

1389-1286/© 2018 Elsevier B.V. All rights reserved.
In some situations, however, data flow in the opposite direction

from the root, or the border router, towards the leaves becomes

ecessary. These situations might arise in network configuration

outines, specific data queries, or applications that require reliable

ata transmissions with acknowledgments. Standard routing pro-

ocols for low-power wireless networks, such as CTP (Collection

ree Protocol [6]) and RPL (IPv6 Routing Protocol for Low-Power

nd Lossy Networks [7]), have two distinctive characteristics: com-

unication devices use unstructured IPv6 addresses that do not

eflect the topology of the network (typically derived from their

AC addresses), and routing lacks support for any-to-any commu-

ication since it is based on distributed collection tree structures

ocused on bottom-up data flows (from the leaves to the root).

The specification of RPL defines two modes of operation for top-

own data flows: the non-storing mode, which uses source rout-

ng, and the storing mode, in which each node maintains a routing

able for all possible destinations. This requires O (n) space (where

 is the total number of nodes), which is unfeasible for memory-

onstrained devices. Our experiments show that in random topolo-

ies with one hundred nodes, with no link or node failures, RPL

ucceeds to deliver less than 20% of top-down messages sent by

he root (see Fig. 8).

Some works have addressed this problem from different per-

pectives [8–10] . CBFR [8] is a routing scheme that builds upon

ollection protocols to enable point-to-point communication. Each

https://doi.org/10.1016/j.comnet.2018.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.04.017&domain=pdf
mailto:bperes@dcc.ufmg.br
mailto:bruno.ps@dcc.ufmg.br
mailto:oaugusto@dcc.ufmg.br
mailto:olga@dcc.ufmg.br
mailto:mmvieira@dcc.ufmg.br
mailto:lfvieira@dcc.ufmg.br
mailto:loureiro@dcc.ufmg.br
https://doi.org/10.1016/j.comnet.2018.04.017

B. Peres et al. / Computer Networks 140 (2018) 28–40 29

n

d

[

t

p

t

t

i

i

m

a

p

a

s

v

l

m

T

w

M

m

t

t

c

t

c

a

a

C

C

a

s

r

i

c

I

R

t

f

n

v

c

I

a

o

p

p

b

i

s

O

t

r

p

i

d

r

M

t

o

a

s

Fig. 1. Matrix protocol’s architecture.

c

r

p

fl

m

m

d

m

a

l

m

2

t

i

e

i

r

i

2 Note that Matrix is not designed to address scenarios with node mobility, but

only to work with network topology dynamics caused by changes in link quality, as

well as node and link failures.
ode in the collection tree stores the addresses of its direct and in-

irect child nodes using Bloom filters to save memory space. ORPL

9] also uses bloom filters and brings opportunistic routing to RPL

o decrease control traffic overload. Both protocols suffer from false

ositives problem, which arises from the use of Bloom filters. Even

hough CTP does not support any-to-any traffic, XCTP [10] , an ex-

ension of this protocol, uses opportunistic and reverse-path rout-

ng to enable bi-directional communication in CTP. XCTP is efficient

n terms of message overload, but exhibits the problem of high

emory footprint.

In this work, we build upon the idea of using hierarchical IPv6

ddress allocation that explores cycle-free network structures and

ropose Matrix, a routing scheme for dynamic network topologies

nd fault-tolerant any-to-any data flows in 6LoWPAN. Matrix as-

umes that there is an underlying collection tree topology (pro-

ided by CTP or RPL, for instance), in which nodes have static

ocations, i.e., are not mobile, and links are dynamic, i.e., nodes

ight choose different parents according to link quality dynamics.

herefore, Matrix is an overlay protocol that allows any low-power

ireless routing protocol to become part of the Internet of Things.

atrix uses only one-hop information in the routing tables, which

akes the protocol scalable to extensive networks. In addition, Ma-

rix implements a local broadcast mechanism to forward messages

o the right subtree when node or link failures occur. Local broad-

ast is activated by a node when it fails to forward a message to

he next hop (subtree) in the address hierarchy.

After the network has been initialized and all nodes have re-

eived an IPv6 address range, three simultaneous distributed trees

re maintained by all nodes: the collection tree (Ctree), the IPv6

ddress tree (IPtree), and the reverse collection tree (RCtree). The

tree is built and maintained by a collection protocol (in our case,

TP). It is a minimum cost tree to nodes that advertise themselves

s tree roots. The IPtree is built by matrix over the first stable ver-

ion of the Ctree in the reverse direction, i.e., nodes in the Ctree

eceive an hierarchical IPv6 address from root to leaves, originat-

ng a static structure. Since the Ctree is dynamic, i.e., links might

hange due to link qualities, at some point in the execution the

Ptree no longer corresponds to the reverse Ctree. Therefore, the

Ctree is created to reflect the dynamics of the collection tree in

he reverse direction.

Initially, any-to-any packet forwarding is performed using Ctree

or bottom-up, and IPtree for top-down data flows. Whenever a

ode or link fails or Ctree changes, the new link is added in the re-

erse direction into RCtree, and it remains as long as this topology

hange persists. Top-down data packets are then forwarded from

Ptree to RCtree via a local broadcast. Whenever a node receives

 local-broadcast message, it checks whether it knows the subtree

f the destination IPv6 address: if yes then the node forwards the

acket to the right subtree via RCtree and the packet continues its

ath in the IPtree until the final destination.

We evaluated the proposed protocol both analytically and

y simulation. Even though Matrix is platform-independent, we

mplemented it as a subroutine of CTP on TinyOS and conducted

imulations on TOSSIM. Matrix’s memory footprint at each node is

 (k), where k is the number of children at any given moment in

ime, in contrast to O (n) of RPL, where n is the size of the subtree

ooted at each routing node. Furthermore, we show that the

robability of a message to be forwarded to the destination node

s high, even if a link or node fails, as long as there is a valid path,

ue to the geometric properties of wireless networks. Simulation

esults show that, when it comes to any-to-any communication,

atrix presents significant gains in terms of reliability (high any-

o-any message delivery) and scalability (presenting a constant, as

pposed to linear, memory complexity at each node) at a moder-

te cost of additional control messages, when compared to other

tate-of-the-art protocols, such as XCTP and RPL. In addition, when
ompared to our any-to-any routing scheme, the reverse-path

outing is more efficient in terms of control traffic. However, the

erformance of XCTP is highly dependent on the number of data

ows, and can be highly degraded when the application requires

ore flows or the top-down messages are delayed.

To sum up, Matrix achieves the following essential goals that

otivated our work:

• Any-to-any routing : Matrix enables end-to-end connectivity

between hosts located within or outside the 6LoWPAN.

• Memory efficiency : Matrix uses compact routing tables and,

therefore, is scalable to extensive networks and does not de-

pend on the number of flows in the network.

• Reliability : Matrix achieves 99% delivery without end-to-end

mechanisms, and delivers ≥90% of end-to-end packets when a

route exists under challenging network conditions.

• Communication efficiency : Matrix uses adaptive beaconing

based on Trickle algorithm [11] to minimize the number of con-

trol messages in dynamic network topologies (except with node

mobility).

• Hardware independence : Matrix does not rely on specific radio

chip features, and only assumes an underlying collection tree

structure.

• IoT integration : Matrix allocates global (and structured) IPv6

addresses to all nodes, which allow nodes to act as destinations

integrated into the Internet, contributing to the realization of

the Internet of Things.

The rest of this paper is organized as follows. In Section 2 , we

escribe the Matrix protocol design. In Section 3 , we analyze the

essage complexity of the protocol. In Section 4 , we present our

nalytic and simulation results. In Section 5 , we discuss some re-

ated work. Finally, in Section 6 , we present the concluding re-

arks.

. Design overview

The objective of Matrix is to enable an underlying data collec-

ion protocol (such as CTP and RPL) to perform any-to-any routing

n the Internet of Things while preserving memory and message

fficiency, as well as adaptability to networks topology dynam-

cs 2 Matrix is a network layer protocol that works together with a

outing protocol. Fig. 1 illustrates the protocol’s architecture, which

s divided into: routing engine and forwarding engine . The routing

30 B. Peres et al. / Computer Networks 140 (2018) 28–40

Fig. 2. MHCL: simplified IPtree example: 8-bit address space at the root and 6.25%

reserved for future/delayed connections.

t

T

d

b

o

t

o

i

a

a

a

n

r

i

f

a

s

i

t

A

a

T

d

w

v

a

i

m

t
engine is responsible for the address space partitioning and dis-

tribution, as well as routing table maintenance. The forwarding

engine is responsible for application packet forwarding.

Matrix encompasses the following execution phases:

1. Collection tree initialization : the collection tree (Ctree)

is built by the underlying collection protocol; each node

achieves a stable knowledge about who its parent is; adap-

tive beaconing based on Trickle algorithm [11] is used to de-

fine stability;

2. IPv6 multihop host configuration : once the collection tree

is stable, the address hierarchy tree (IPtree) is built using

MHCL (Section 2.1); this phase also uses adaptive beaconing

to handle network dynamics; by the end of this phase, each

node has received an IPv6 address range from its parent, and

each non-leaf node has partitioned its address space among

its children; the resulting address hierarchy is stored in the

distributed IPtree, which initially has the same topology as

Ctree, but in reverse, top-down, direction.

3. Standard routing : bottom-up routing is done using the

collection tree, Ctree, and top-down routing is done using

the address hierarchy represented by the IPtree; any-to-any

routing is performed by combining bottom-up forwarding,

until the lowest common ancestor (LCA) of sender and re-

ceiver, and then top-down forwarding until the destination.

4. Alternative top-down routing table upkeep : whenever a

node changes its parent in the initial collection tree, it starts

sending beacons to its new parent in Ctree, requesting to

upkeep an entry in its routing table with its IPv6 range; such

new links in Ctree, in reverse direction, comprise the RCtree

routing tables for alternative (top-down) routing;

5. Alternative top-down routing via local broadcast : when-

ever a node fails to forward a data packet to the next

hop/subtree in the IPtree, it broadcasts the packet to its

one-hop neighborhood; upon receiving a local broadcast, all

neighbors check if the destination IPv6 belongs to an ad-

dress range in their RCtree table; if positive, the packet is

forwarded to the correct subtree of IPtree. Otherwise, the

packet is dropped; we give a geometric argument and show

through simulations that such events are rare.

Next, we describe the architecture of Matrix in more detail.

2.1. MHCL: Multihop Host Configuration for 6LoWPAN

Matrix is built upon the idea of IPv6 hierarchical address al-

location. The address space available to the border router of the

6LoWPAN (e.g., the 64 least-significant bits of the IPv6 address

or a compressed 16-bit representation of it) is hierarchically par-

titioned among nodes connected to the border router through a

multihop cycle-free topology (implemented by standard protocols,

such as RPL or CTP). Each node receives an address range from its

parent and partitions it among its children, until all nodes receive

an address. Since the address allocation is performed hierarchically,

the routing table of each node has k entries, where k is the num-

ber of its (direct) children. Each routing table entry aggregates the

addresses of all nodes in the subtree rooted at the corresponding

child-node. A portion, say r %, of the address space available to each

node is left reserved for possible future/delayed connections (pa-

rameter r can be configured according to the expected number of

newly deployed nodes in the network, see Fig. 2). We refer to the

resulting distributed tree structure as IPtree.

Messages: MHCL uses two message types to build the routing

structure: MHCL Aggregation and MHCL Distribution respectively MHCL A
and MHCL D for short. Messages MHCL A are used in the upward

routes, from child to parent. This message carries the number of

a node’s descendants, used in the aggregation phase. Messages of
ype MHCL D are sent along downward routes, from parent to child.

his message is used for address allocation and contains the ad-

ress and corresponding address partition assigned to a child node

y its parent. Note that the size of the first address and the size

f the allocated address partition can have a length predefined by

he root, according to the overall address space (we used a value

f 16 bits because the compressed host address has 16 bits). This

nformation is sufficient for the child node to decode the message

nd execute the address allocation procedure for its children.

Network stabilization: In order to decide how the available

ddress space is partitioned, nodes need to collect information

bout the topology of the network. Once a stable view of the

etwork’s topology is achieved, the root starts distributing address

anges downwards to all nodes. Note that the notion of stability is

mportant to implement a coherent address space partition. There-

ore, MHCL has an initial set-up phase, during which information

bout the topology is progressively updated until a (predefined)

ufficiently long period goes by without any topology changes. To

mplement this adaptive approach, we use Trickle-inspired timers

o trigger messages (Algorithm 1). In Algorithm 1 two parameters

lgorithm 1 MHCL: stabilization timer.

1: parentDefined = FALSE;

2: maxTime = spChil d ∗ T rickl e min ;

3: timer = rand(1 / 2 ∗ T rickle min , T rickle min]; � reset timer

4: while NOT parentDefined do

5: if NOT-ROOT and TIMER-OFF then

6: if PARENT-CHANGED then

7: reset timer;

8: else

9: if timer < maxT ime then

10: timer *= 2; � double timer

11: else

12: parentDefined = TRUE;

13: end if

14: end if

15: end if

16: end while

re used: T rickle min is the minimum time interval used by the

rickle algorithm, and spChild is a multiplication factor used to

efine the maximum time interval, such that, if no changes occur

ithin it, then the parent choice becomes stable, and the local

ariable parentDefined is set to TRUE. Since Matrix starts running

t the same time as the underlying protocol (in our case, CTP),

n the initial state of the network nodes do not have any infor-

ation about neighboring links. CTP uses 4-bit metric (expected

ransmission count, or ETX) to estimate the link quality and route

B. Peres et al. / Computer Networks 140 (2018) 28–40 31

c

c

l

w

t

t

a

t

s

i

t

t

e

a

e

s

A

s

c

t

i

i

b

A

s

t

v

n

s

a

A

p

p

t

r

w

m

n

i

n

b

c

t

h

l

d

l

t

t

b

e

(

2

I

t

m

t

a

w

s

t

t

I

W

l

a

ost. Therefore, Matrix does not know when a node has finally

hosen the best connection to its neighbor, i.e., the node with the

owest ETX. That’s why Matrix uses the Trickle timer to define

hat we call a “stable” network configuration. Note that, once

he network reaches an initial state of stability, later changes to

opology are expected to be of local nature, caused by a link or

 node failure, or a change in the preferred parent of a node. In

hese cases, the address allocation does not need to be updated,

ince local mechanisms of message resubmission can be used to

mprove message delivery rates, as described in Section 2.4 .

Descendants convergecast: After the initial network stabiliza-

ion, each node n i counts the total number of its descendants, i.e.,

he size of the subtree rooted at itself, and propagates it to its par-

nt. Moreover, n i saves the number of descendants of each child. If

 node is not the root, and it has defined who the preferred par-

nt is (parentDefined is TRUE) it starts by sending a MHCL A mes-

age with count = 0 (Algorithm 2). Then it waits for MHCL A mes-

lgorithm 2 MHCL: aggregation timer (non-root nodes).

1: maxTimeLeaf = spLea f ∗ T rickle min ;

2: timer = rand(1 / 2 ∗ T rickle min , T rickle min]; � reset timer

3: count = 0; � counts descendants through MHCL A messages

4: while NO- MHCL D -FROM-PARENT do

5: � hasn’t received IPv6 range

6: if NOT-ROOT and TIMER-OFF then

7: if parentDefined and (count < 1) then

8: send MHCL A to parent; � trigger aggregation

9: end if

10: if COUNT-CHANGED then

11: send MHCL A to parent;

12: reset timer;

13: else

14: if timer < maxT imeLea f then

15: timer *= 2;

16: end if

17: end if

18: end if

19: end while

ages from its children, updates the number of descendants of each

hild, and propagates the updated counter to the parent until its

otal number of descendants is stable. If a node is the root, then

t just updates the number of descendants of each child by receiv-

ng MHCL A messages until its total number of descendants is sta-

le (Algorithm 3). Parameters spLeaf and spRoot are used to define

lgorithm 3 MHCL: aggregation timer (Root).

1: descendantsDefined = FALSE;

2: maxTimeRoot = spRoot ∗ T rickle min ;

3: timer = rand(1 / 2 ∗ T rickle min , T rickle min]; � reset timer

4: count = 0; � counts descendants through MHCL A messages

5: while NOT descendantsDefined do

6: if IS-ROOT and TIMER-OFF then

7: if COUNT-CHANGED then

8: reset timer;

9: else

10: if timer < maxT imeRoot then

11: timer∗ = 2 ;

12: else

13: descendantsDefined = TRUE;

14: end if

15: end if

16: end if

17: end while
R
tabilization criteria in non-root nodes and the root node, respec-

ively. Once the aggregation phase is completed, the root’s local

ariable descendantsDefined is set to TRUE.

Address allocation: Once the root has received the (aggregate)

umber of descendants of each child; it splits the available address

pace into k ranges proportionally to the size of the subtree rooted

t each child (see Algorithm 4). Each node n i repeats the space

lgorithm 4 MHCL: IPv6 address distribution.

1: STABLE = descendantsDefined or NOT-ROOT;

2: if STABLE and (IS-ROOT or RECEIVED- MHCL D) then

3: partition available address space;

4: for each child c i do

5: send MHCL D to c i ; � send IPv6 “range”

6: if NO ack then

7: send MHCL D to c i ; � retransmit

8: end if

9: end for

10: end if

artitioning procedure upon receiving its address space from the

arent and sends the proportional address ranges to the respec-

ive children (always reserving r % for delayed address allocation

equests). The idea is to allocate larger portions to larger subtrees,

hich becomes important in especially large networks because it

aximizes the address space utilization. Note that this approach

eeds information aggregated along multiple hops, which results

n a longer set-up phase.

Delayed connections: If an address allocation request from a

ew child node is received after the address space had already

een partitioned and assigned, then the address allocation pro-

edure is repeated using the reserved address space. Because of

he network stabilization phase and since a node does not know

ow many descendants it has after the stabilization, we have de-

ayed connections of nodes that are not accounted during the ad-

ressing stage. After the address allocation is complete, each (non-

eaf) node stores a routing table for downward traffic, with an en-

ry for each child. Each table entry contains the final address of

he address range allocated to the corresponding child, and all ta-

le entries are sorted in increasing order of the final address of

ach range. In this way, message forwarding can be performed in

sub)linear time.

.2. Control plane: distributed tree structures

After the network is initialized and all nodes have received an

Pv6 address range, three simultaneous distributed trees are main-

ained on all nodes in the 6LoWPAN: Ctree: the collection tree,

aintained by the underlying collection protocol (CTP/RPL). IPtree:

he IPv6 address tree, built during the network initialization phase

nd kept static afterward, except when new nodes join the net-

ork, in which case they receive an IPv6 range from the reserved

pace of the respective parent node in the collection tree.

RCtree: the reverse collection tree, reflecting the dynamics of

he collection tree in the opposite direction.

Initially, IPtree has the same topology as the reverse-collection

ree Ctree R , and RCtree has no links (see Fig. 3 (a) and 3 (b)).

P tree = C tree R and RC tree = ∅
henever a change occurs in one of the links in Ctree, the new

ink is added in the reverse direction into RCtree and maintained

s long as this topology change persists (see Figs. 3 (c) and 3 (d)).

Ctree = Ct ree R \ IP t ree

32 B. Peres et al. / Computer Networks 140 (2018) 28–40

Fig. 3. RCtree example: before and after two links change in the collection tree.

(

t

c

(

i

n

s

m

t

t

2

p

b

t

a

t

t

p

n

a

m

n

w

c
Therefore, RCtree is not really a tree since it contains only the

reversed links present in Ctree but not in IPtree. Nevertheless, its

union with the “working” links in IPtree is, in fact, a tree, which is

used in the alternative top-down routing:

RCtree ∪ (IP tree ∩ Ctree R) :alternative routing tree.

Each node n i maintains the following information:

• CTparent i : the ID of the current parent in the dynamic collec-

tion tree;

• IParent i : the ID of the node that assigned n i its IPv6 range ini-

tially CTarent i = IParent i);

• IPchildren i : the standard (top-down) routing table, with address

ranges of each one-hop descendant of n i in the IPtree;

• RChildren i : the alternative (top-down) routing table, with ad-

dress ranges of one-hop descendants in the RCtree.

Note that, each node stores only one-hop neighborhood infor-

mation, so the memory footprint is O (k), where k is the number

of a node’s children at any given moment in time, which is opti-

mal, considering that any (optimal) top-down routing mechanism

would need at least one routing entry for every (current) child in

the tree topology to reach all destinations.

The routing engine (see Fig. 1) is responsible for creating and

maintaining the IPtree and RCtree routing tables. IPtree is cre-

ated during the network initialization phase, while RCtree is up-

dated dynamically to reflect changes in the network’s link quali-

ties. Whenever a node n i has its CTparent i updated, and the current

parent is different from its IParent i (IParent i � = CTparent i), n i starts

sending periodic beacons to its new parent, with regular intervals
in our experiments, we set the beacon interval to δ/8, where δ is

he maximum interval of the Trickle timer used in CTP). Upon re-

eiving a beacon (from a new child in the collection tree), a node

 n j = CT parent i) creates and keeps an entry in its alternative rout-

ng table RChildren j with the IPv6 address range of the subtree of

 i . As soon as n i stops using n j as the preferred parent, it stops

ending beacons to n j . If no beacon is received from n i after 2 × δ
s, its (alternative) routing entry is deleted. Therefore, links in RC-

ree are temporary and are deleted when not present in neither

he collection nor the IP trees.

.3. Data plane: any-to-any routing

The forwarding engine (see Fig. 1) is responsible for application

acket forwarding. Any-to-any routing is performed by combining

ottom-up forwarding, until the LCA of sender and receiver, and

hen top-down forwarding until the destination. Upon receiving an

pplication layer packet, each node n i verifies whether the destina-

ion IPv6 address falls within some range j ∈ IPchildren i : if yes then

he packet is forwarded (downwards) to node n j , otherwise, the

acket is forwarded (upwards) to CTparent i . Note that, since each

ode has an IPv6 address, in contrast to collection protocols, such

s CTP and RPL, in Matrix, every node can act as a destination of

essages originated inside and outside of the 6LoWPAN.

Each forwarded packet requests an acknowledgment from the

ext hop and can be retransmitted up to 30 times (similarly to

hat is done in CTP [6]). If after that no acknowledgment is re-

eived, then the node performs a local broadcast , looking for an

B. Peres et al. / Computer Networks 140 (2018) 28–40 33

Fig. 4. Alternative top-down routing upon Ctree change.

a

T

2

r

w

b

(

m

m

t

a

i

a

t

t

d

d

e

w

3

n

i

p

a

a

w

c

c

t

a

a

p

F

t

r

i

t

i

c

t

n

d

m

a

X

t

i

i

2

t

o
lternative next hop in the RCtree table of a (one-hop) neighbor.

he alternative routing process is described in detail below.

.4. Fault tolerance and network dynamics

So why is Matrix robust to network dynamics? Note that, since

outing is based on the hierarchical address allocation, if a node

ith the routing entries necessary to locate the next subtree

ecomes unreachable for longer than approximately one second

failures that last less than 1s are effectively dealt with by retrans-

ission mechanisms available in standard link layer protocols),

essages with destinations in that subtree are dropped.

When a node or link fails or changes in Ctree, RCtree reflects

his change, and packets are forwarded from IPtree to RCtree via

 local broadcast. The node that receives a local-broadcast checks

n its RCtree whether it knows the subtree of the destination IPv6

ddress: if yes then is forwards the packet to the right subtree and

he packet continues its path in the IPtree until the final destina-

ion.

Consider the following scenario: node X receives a packet with

estination IPv6 address D (see Fig. 4 (a)). After consulting its stan-

ard routing table IP − children X , X forwards the packet to C . How-

ver, the link X ⇒ C fails, for some reason, and C does not reply

ith an acknowledgment. Then, X makes a constant number (e.g.,

0 times in CTP) of retransmission attempts. Meanwhile, since

ode C also lost its connection to X , it decides to change its parent

n the collection tree to node A (see Fig. 4 (c)). Having changed its

arent, C starts sending beacons to A , which creates an entry in its

lternative routing table RC − children A for the subtree rooted at C ,
nd keeps it as long as it receives periodic beacons from C (which

ill be done as long as CTparent = A).
C
Having received no acknowledgment from C , X activates the lo-

al broadcast mode: it sets the message’s type to “LB” and broad-

asts it to all its one-hop neighbors (see Fig. 4 (c)). Upon receiving

he local broadcast, node A consults its alternative routing table

nd finds out that the destination address D falls within the IPv6

ddress range C . It then forwards the packet to C , from where the

ackets follow along its standard route in the subtree of C (see

ig. 4 (d)).

The local broadcast is a reactive mechanism that could be al-

ernatively implemented in a proactive way by adding temporary

outing entries to indicate that a link has changed to all nodes

n the path between the new parent and the LCA. Such a proac-

ive approach could be preferable if Matrix were designed to work

n a mobile node environment, where link changes were not lo-

al and persistent. However, the memory footprint of such a solu-

ion would be linear with the number of link changes in each LCA

ode’s subtree. Local broadcast, on the other hand, handles link

ynamics (without node mobility), while guaranteeing a constant

emory footprint at each node.

Finally, note that the local broadcast mechanism does not guar-

ntee that the message will be delivered. If no one-hop neighbor of

 had the address range of C in its alternative routing table, then

he packet would be lost. Nevertheless, we argue that the probabil-

ty that the message will be forwarded to the appropriate subtree

s high.

.5. Alternative routing: geometric rationale

The success of the local broadcast mechanism lies in the ability

o forward messages top down along the IPtree, in spite of one

r more link or node failures on the way. Note that, whenever a

34 B. Peres et al. / Computer Networks 140 (2018) 28–40

w

r

�

p

v

s

T

c

m

c

=
P

N

m

t

t

p

m

c

s

l

e

n

t

o

v

o

n

S

4

o

t

a

t

o

a

R

s

b

a

t

n

4

[

[

m

m

s

w

p

f

a

d

e
node of IPtree is unavailable, it might not be possible to find the

right subtree of the destination. Matrix is designed to handle (non-

adjacent) link or node failures and relies on a single local broadcast

and temporary reverse collection links (RCtree).

Consider once again the scenario illustrated in Fig. 4 . When a

node X is unable to forward a packet to the next hop, it activates

the local broadcast mechanism, and it becomes essential that one

of X ’s one-hop neighbors (in this case A) has replaced X as a parent

of C in the collection tree. Therefore, given that the new parent of

C is A , it becomes essential that X and A are neighbors. We argue

that it is unlikely that this is not the case, and show our argument

in a Unit Disk Graph (UDG) model. We use the fact that the num-

ber of independent neighbors of any node in a UDG is bounded by

a small constant, namely 5 [12] .

Given that the maximum number of neighbors that do not

know each other is very small, for any possible node distribution

and density around X , the probability that two neighbors of X are

independent is low. In Fig. 4 (d), since both X and A are neigh-

bors of C , the probability that they are themselves neighbors is

high. Similar arguments can be used to back the effectiveness of

the local broadcast mechanism when dealing with different non-

adjacent link and node failures.

Note that this reasoning is only valid in an open space without

obstacles and, even then, does not guarantee that the message will

be delivered. Nevertheless, our experiments show that this intu-

ition is in fact correct, and Matrix has a 95%–99% message delivery

success in scenarios with node failures of increasing frequency and

duration.

3. Complexity analysis

In this section, we assume a synchronous communication

model with point-to-point message passing. In this model, all

nodes start executing the algorithm simultaneously and time is di-

vided into synchronous rounds, i.e., when a message is sent from

node v to its neighbor u at time-slot t , it must arrive at u before

time-slot t + 1 .

We first analyze the message and time complexity of the IPv6

address allocation phase of Matrix. Then, we look into the mes-

sage complexity of the control plane of Matrix after the network

initialization phase.

Note that Matrix requires that an underlying acyclic topology

(Ctree) has been constructed by the network before the address

allocation starts, i.e., every node knows who its parent in the Ctree

is. Moreover, one of the building blocks of Matrix is the address

allocation phase, described in Section 2.1 .

Theorem 1. For any network of size n with a spanning collection tree

Ctree rooted at node r, the message and time complexity of Matrix

protocol in the address allocation phase is Msg (Matrix IP (Ctree, r)) =
�(n) and Time (Matrix IP (Ctree, r)) = �(depth (Ctree)), respectively.

This message and time complexity is asymptotically optimal.

Proof. The address allocation phase of Matrix is comprised of a

tree convergecast and a tree broadcast. In the tree convergecast

phase, each node sends one message to its preferred parent, in-

forming the size of its subtree, which takes O (n) messages in to-

tal and O (depth (Ctree)) time-slots. In the tree broadcast phase, ad-

dress range allocation information is distributed from the root to

all nodes in the collection tree, also using O (n) messages and

O (depth (Ctree)) time-slots. In the convergecast operation, since ev-

ery node must send a message to its parent after having received

a message from its children, the minimum number of exchanged

messages is �(n). Also, a message sent by every leaf node must

reach the root, at distance ≤ depth (Ctree), which needs at least

�(depth (Ctree)) time-slots. Similarly, in the broadcast operation, a

message must be sent to every node by the respective parent,
hich needs �(n) messages. Moreover, the message sent by the

oot must reach every node at depth (Ctree) hops away, which needs

(depth (Ctree)) time-slots. Therefore, the message and time com-

lexity of Matrix is asymptotically optimal. �

Next, we examine the communication cost of the routines in-

olved in the alternative routing, performed in the presence of per-

istent node and link failures.

heorem 2. Consider a network with n nodes and a failure event that

auses L CT links to change in the collection tree Ctree for at most �

s. Moreover, consider a beacon interval of δ ms. The control message

omplexity of Matrix to perform alternative routing is Msg (Matrix RC)

 O (n) .

roof. Consider the L CT link changes in the collection tree Ctree.

ote that L CT = O (n) since Ctree is acyclic and, therefore, has at

ost n − 1 links. Every link that was changed must be inserted in

he RCtree table of the respective (new) parent and kept during

he interval � using regularly sent beacons from the child to the

arent. Given a beacon interval of δ, the total number of control

essages is bounded by �/δ × L CT = O (n) . �

The analysis presented in this section is based on the syn-

hronous communication model. Nevertheless, in reality, the as-

umptions of synchronicity and point-to-point reliable message de-

ivery do not typically hold in a 6LoWPAN. The moment in which

ach node joins the tree varies from node to node, such that

odes closer to the root tend to start executing the address alloca-

ion protocol earlier than nodes farther away from the root. More-

ver, collisions, node, and link failures can cause delays and pre-

ent messages from being delivered. We analyze the performance

f Matrix in an asynchronous model with collisions and transient

ode and link failures of variable duration through simulations in

ection 4 .

. Evaluation

In this section, we evaluate Matrix performance against state-

f-the-art protocols such as RPL [7] , CTP [6] and XCTP [10] . In order

o do that, we conduct a bulk of experiments through simulation,

lthough Matrix’ code is ready to run into real devices. We divide

he experiments into three main classes: memory efficiency, protocol

verhead, and protocol reliability .

In terms of memory efficiency, we analyze the routing table us-

ge as demand measurement to perform routing, and RAM and

OM footprint as requisites to deploy the protocols. Also, we mea-

ured the protocols cost regarding control message overhead to

uild and maintain routing structures updated, in both dynamic

nd static scenarios. We also measure the protocol reliability in

erms of delivered data packets in both dynamic and static sce-

arios.

.1. Simulation setup

Matrix was implemented as a subroutine of CTP in TinyOS

13] and the experiments were run using the TOSSIM simulator

14] . We compare Matrix with and without the local broadcast

echanism, to which we refer as MHCL. XCTP also was imple-

ented in TinyOS. RPL was implemented in ContikiOS [5] and was

imulated on Cooja [15] .

Firstly, we run the protocols over a static network scenario

ithout link or node failures. Table 1 lists the default simulation

arameters for non-faulty scenario. We use the LinkLayerModel tool

rom TinyOS to generate the topology and connectivity model. We

lso simulated a range of faulty scenarios, based on experimental

ata collected from TelosB sensor motes, deployed in an outdoor

nvironment [16] . In each scenario, after every 60s of simulation,

B. Peres et al. / Computer Networks 140 (2018) 28–40 35

Table 1

Simulation parameters.

Parameter Value

Base station 1 center

Number of nodes 100

Radio range (m) 100

Density (nodes / m

2) 10

Number of experiments 10

Path loss exponent 4.7

Power decay (dB) 55.4

Shadowing Std Dev (dB) 3.2

Simulation duration 20 min

Application messages 10 per node

Max. routing table size 20 entries

Table 2

Faulty network scenarios.

Probability (σ) � Duration (ε) Short dur. Moderate dur. Long dur.

Low prob. (1%, 10s) (1%, 20s) (1%, 40s)

Moderate prob. (5%, 10s) (5%, 20s) (5%, 40s)

High prob. (10%, 10s) (10%, 20s) (10%, 40s)

e

r

s

s

i

σ

s

f

t

s

k

r

o

a

m

o

t

w

p

f

o

4

t

b

a

w

t

M

σ

t

h

u

e

i

t

t

Fig. 5. Routing table usage CCDF. (Maximum table size = 20).

Fig. 6. Code and memory footprint in bytes.

t

f

T

t

u

X

o

d

t

o

l

f

p

C

c

i

t

s

c

d

u

o

i

w
ach node shutdowns its radio with probability σ and keeps the

adio off for a time interval uniformly distributed in [ε − 5 , ε + 5]

econds. Table 2 presents a range of values for A and B, in which A

cales from low to high probabilities, and B from short to long time

nterval. So, each scenario represents a combination of values of

and ε. Note that these are all node-failure scenarios, which are

ignificantly harsher than models that simulate link or per-packet

ailures only.

On top of the network layer, we ran two different applications:

op-down and any-to-any. In the top-down application, each node

ends 10 messages to the root and the root replies with an ac-

nowledgment. In the any-to-any application, each node chooses

andomly 10 destination addresses and sends one message to each

f those addresses. Nodes start sending application messages 90s

fter the simulation has started. The entire simulation takes 20

inutes. Each simulation was run 10 times. In each plot, the curve

r bars represent the average, and the error bars the confidence in-

erval of 95%. For each protocol, only results relevant to each plot

ere included: e.g., CTP does not have a reverse routing table to

erforms top-down routing, and MHCL differs from Matrix only in

aulty scenarios; otherwise, it performs equally and therefore was

mitted.

.2. Results

Firstly, we turn our attention to memory efficiency of each pro-

ocol. To evaluate the use of routing tables, we compare the num-

er of entries utilized by each protocol. Each node was allocated

 routing table of maximum size equal to 20 entries. In Fig. 5 ,

e show the CCDFs (complementary cumulative distribution func-

ions) of the percentage of routing table usage among nodes 3 for

atrix, RPL, XCTP, and MHCL.

In this plot, Matrix was simulated in the faulty scenario, where

and ε were set to High Probability and Long Duration, respec-

ively (Table 2). Note that > 35% of nodes are leaves, i.e., do not

ave any descendants in the collection tree topology, and therefore

se zero routing table entries.

As we can see, RPL is the only protocol that uses 100% of table

ntries for some nodes (≥25% of nodes have their tables full). This

s because RPL, in the storing mode, pro-actively maintains an en-

ry in the routing table of every node on the path from the root
3 We measured the routing table usage of each node in one-minute intervals,

hen took the average over 20 minutes.

c

r

n

l
o each destination, which quickly fills the available memory and

orces packets to be dropped.

XCTP reactively stores reverse routes only when required.

herefore, the number of routing entries used by XCTP depends on

he number of data flows going through each node. Since the sim-

lated flows were widely spaced during the simulation time, the

CTP was able to perform efficiently.

The difference between MHCL and Matrix is small: MHCL stores

nly the IPtree structure, whereas Matrix stores IPtree and RCtree

ata; the latter are kept only temporarily during parent changes in

he collection tree, so its average memory usage is low.

Fig. 6 compares RAM and ROM footprints in the protocol stack

f CTP, RPL, XCTP, and Matrix. We can see that Matrix adds only a

ittle more than 7Kb of code to CTP, allowing this protocol to per-

orm any-to-any communication with high scalability. When com-

ared with RPL, the execution code of Matrix requires less RAM.

ompared to XCTP, Matrix uses almost the same amount of RAM.

In order to evaluate the protocols cost, we measure the proto-

ols overhead to create and maintain the routing structures. Fig. 7

llustrates the amount of control traffic in our experiments (the to-

al number of beacons sent during the entire simulation). Fig. 7 (a)

hows the protocols cost for static scenario. Matrix sends fewer

ontrol packets than RPL, because it only sends additional beacons

uring network initialization and in case of collection tree topology

pdates, whereas RPL has a communication intensive maintenance

f downward routes during the entire execution time. Since XCTP

s a reactive protocol, it does not send additional control packets,

hen compared to CTP. Fig. 7 (b) reports the protocols cost to every

ombination of faulty parameters. Again, the protocols behaviour

epeat, but the total amount of control packets increases due the

etwork dynamics. In the worst scenario case (high probability and

ong duration), Matrix presents 45% less control overhead than RPL.

36 B. Peres et al. / Computer Networks 140 (2018) 28–40

Fig. 7. Number of control packets.

Fig. 8. Top-down routing success rate.

t

a

l

m

b

d

s

t

r

r

W

t

a

p

d

X

k

c

o

x

3

d

c
Matrix sends 22% more beacons than XCTP and CTP. However, Ma-

trix maintains downwards routes unlike XCTP and CTP.

To evaluate the protocols reliability, we analyze the delivery

rate. In Fig. 8 we compare top-down routing success rate. We mea-

sured the total number of application (ack) messages sent down-

wards and successfully received by the destination. 4 In the plot,

“inevitable losses” (unfilled bars) refers to the number of messages

that were lost due to a failure of the destination node, in which

case, there was no valid path to the destination and the packet loss

was inevitable. The remaining messages were lost due to wireless

collisions and node failures on the packet’s path.

Fig. 8 (a) shows the protocols top-down success rate for the

static scenario. All protocols present high top-down success rate

except RPL, which present poor delivery rate. RPL proactively

stores entries in the routing table, thus nodes table nearby the

root node quickly fill their entries and lack memory to store all

top-down routes. In Fig. 8 (b), we present the protocols perfor-

mance under faulty scenarios. We can see that, when a valid

path exists to the destination, the top-down success rate of Matrix

varies between 95% and 99%. In the harshest faulty (High Prob. and

Long Dur.), without the local broadcast mechanism, MHCL delivers

85% of top-down messages. With the local broadcast activated, the

success rate increases to 95%, i.e., roughly 2/3 of otherwise lost

messages succeed in reaching the final destination. Note that ex-

ternal factors may be causing RPL’s low success rate. Since RPL was

the only protocol implemented on Contiki and evaluated in Cooja,

native protocols from this OS can interfere with the results. In [17] ,
4 We do not plot the success rate of bottom-up traffic, since it is done by the

underlying collection protocol, without any intervention from Matrix.

a

s

n

b

he authors show how different radio duty cycling mechanisms

ffect the performance of a RPL network. However, RPL delivered

ess than 20% of messages in all simulated scenarios due to lack of

emory to store routes. Since XCTP is a reactive protocol, it adapts

est to failures and dynamics, because downward routes are up-

ated when a message travels upwards. In this way, the top-down

uccess rate of XCTP is higher even in the presence of failures.

In Fig. 9 we compare the any-to-any success rate. We measured

he total number of messages sent by a node that was successfully

eceived by the destination. In this application, each node chooses

andomly a destination address and sends a message to this node.

e can see that, as expected, there is no significant difference be-

ween any-to-any and top-down traffic patterns. Matrix performs

ny-to-any routing with 90% to 100% success rate, when a valid

ath exists to the destination. The success rate of RPL remains low,

ue to lack of memory to store all the routing information needed.

Finally, in Fig. 10 we compare the response rate of Matrix and

CTP. We calculate the rate of reply by dividing the number of ac-

nowledgments sent by the root by the number of messages re-

eived by the root. We vary the reply delay, that is, upon receipt

f a message, the root will reply with an acknowledgment after

 milliseconds, where x ∈ {10 0, 20 0, 225, 250, 275, 30 0, 325, 350,

75, 40 0, 80 0}. We can see that the performance of XCTP is highly

ependent on the number of data flows. By increasing the appli-

ation response delay, the number of simultaneous flows increases

nd the response success rate decreases, because nodes can not

tore all the information needed. Matrix, on the other hand, does

ot depend on the number of flows, and the routing table usage is

ounded by the number of children of each node.

B. Peres et al. / Computer Networks 140 (2018) 28–40 37

Fig. 9. Any-to-any routing success rate.

Fig. 10. Response success rate.

5

a

s

t

U

t

w

Table 3

Comparison between related protocols for 6LoWPAN.

Matrix RPL CTP XCTP

Bottom-up traffic
√ √ √ √

Top-down traffic
√ √ √

Any-to-any traffic
√ √

Address-allocation
√

Memory efficiency
√ √

Fault tolerance
√ √

a

i

t

i

n

a

i

u

p

d

4

a

t

b

r

p

t

a

w

a

i

t

i

t

e

n

i

l

u

t

p

t

d

r

n

s

[

I

a

c

w

p

i

s

a

M

s

t

a

n

u

. Related work

AODV [18] and DSR [19] are on-demand routing protocols for

ny-to-any communication. AODV floods the network with mes-

ages RREQ to build a path till the destination. On the other hand,

he DSR protocol uses the packet header to store the route path.

nlike DSR, our protocol does not store any routing path informa-

ion in the packet header. The AODV protocol has some similarity

ith XCTP in the strategy of storing the reverse path. Performing
 conceptual comparative between these protocols with Matrix, it

s easy to see that Matrix does not save entire routes either in

ables or packets. Dymo [20] is the AODV successor, however, it

s optimized for MANETs. In the context of low-power and lossy

etworks, CTP [6] and CodeDrip [21] were designed for bottom-up

nd top-down data flow, respectively. They support communication

n only one direction. CodeDrip is a dissemination protocol that

ses network coding to recover lost packets by combining received

ackets. Our approach is an any-to-any protocol that also enables

issemination. CTP is an efficient data collection protocol that uses

-bit [22] metric to estimate the link quality and route cost. Data

nd control packets are used to obtain the link quality on CTP. Mul-

iHopLQI [23] and MintRoute [24] have the same propose of CTP,

ut CTP overcomes them as shown in [6] . CGR [25] is a collection

outing protocol that considers both centrality and energy to im-

rove network performance and decrease power consumption.

State-of-the-art routing protocols for 6LoWPAN that enable any-

o-any communication are RPL [7] , XCTP [10] , and Hydro [26] . RPL

llows two modes of operation (storing and non-storing) for down-

ards data flow. The non-storing mode is based on source routing,

nd the storing mode pro-actively maintains an entry in the rout-

ng table of every node on the path from the root to each destina-

ion, which is not scalable to even moderate-size networks. XCTP

s an extension of CTP and is based on a reactive reverse collec-

ion route creating between the root and every source node. An

ntry in the reverse-route table is kept for every data flow at each

ode on the path between the source and the destination, which

s also not scalable in terms of memory footprint. Hydro protocol,

ike RPL, is based on a DAG (directed acyclic graph) for bottom-

p communication. Source nodes need to periodically send reports

o the border router, which builds a global view (typically incom-

lete) of the network topology.

More recent protocols [27–29] modified RPL to include new fea-

ures. In [27] , a load-balance technique is applied over nodes to

ecrease power consumption. In [28,29] , they provide multipath

outing protocols to improve throughput and fault tolerance. Alter-

ative addressing schemes for 6LoWPAN have also been recently

tudied in some specific application contexts, such as vehicular

30] and wireless body area [31] networks.

This work is based on preliminary conference versions [32,33] .

n [33] , MHCL, a preliminary proposal of the hierarchical address

llocation scheme, was presented. MHCL differs from Matrix be-

ause MHCL is not fault tolerant and does not deal with net-

ork dynamics. In [32] , a preliminary evaluation of Matrix was

resented, however, the communication routines of the address-

ng phase were not described in detail. In the present journal ver-

ion, additional experiments were executed, comparing XCTP [10] ,

 new baseline protocol that implements reverse routing, against

atrix. In particular, we characterized scenarios in which XCTP has

everely degraded performance in top-down routing, whereas Ma-

rix’s performance is unaffected. Finally, a new data traffic pattern

pplication was implemented and evaluated in the simulations,

amely Any-to-Any routing.

Table 3 shows a comparison between the 6LoWPANs protocols

sed in the analysis.

38 B. Peres et al. / Computer Networks 140 (2018) 28–40

[

[

[

[

[

[

6. Conclusions and future work

In this paper, we proposed Matrix: a novel routing protocol

that runs upon a distributed acyclic directed graph structure and is

comprised of two main phases: (1) network initialization, in which

hierarchical IPv6 addresses, which reflect the topology of the un-

derlying wireless network, are assigned to nodes in a multihop

way; and (2) reliable any-to-any communication, which enables

message and memory-efficient implementation of a wide range of

new applications for 6LoWPAN.

Matrix differs from previous work by providing a reliable and

scalable solution for any-to-any routing in 6LoWPAN, both in terms

of routing table size and dummyTXdummy- control message over-

head. Moreover, it allocates global and structured IPv6 addresses

to all nodes, which allow nodes to act as destinations integrated

into the Internet, contributing to the realization of the Internet of

Things .

Revision 2: An interesting future direction is to study mobility

in 6LoWPAN. We would like to evaluate the suitability of Matrix in

mobile scenarios, where nodes change their point-of-attachment to

the 6LoWPAN without changing their IPv6 address, exploring fea-

tures of the Mobile IPv6 protocol [34] . Once we consider mobility

of nodes, the local broadcast mechanism that relies on the prox-

imity of the alternative links will no longer hold. This implies that

nodes may need to update the routing tables from the new par-

ent to the lowest common ancestor. At first, the memory footprint

of such a solution would be linear with the number of mobile de-

scendent nodes (or parent changes) in each node’s subtree, but this

will avoid unnecessary retries, timeouts and broadcast.

Acknowledgements

This work was supported in part by CAPES, CNPq and FAPEMIG.

References

[1] G. Tolle , J. Polastre , R. Szewczyk , D. Culler , N. Turner , K. Tu , S. Burgess , T. Daw-

son , P. Buonadonna , D. Gay , W. Hong , A macroscope in the redwoods, in: Pro-
ceedings of the 3rd International Conference on Embedded Networked Sensor

Systems, SenSys ’05, 2005, pp. 51–63 .
[2] P. Vicaire , T. He , Q. Cao , T. Yan , G. Zhou , L. Gu , L. Luo , R. Stoleru , J.A. Stankovic ,

T.F. Abdelzaher , Achieving long-term surveillance in vigilnet, ACM Trans. Sen.

Netw. 5 (1) (2009) 9:1–9:39 .
[3] G. Werner-Allen , K. Lorincz , J. Johnson , J. Lees , M. Welsh , Fidelity and yield in a

volcano monitoring sensor network, in: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06, 2006, pp. 381–396 .

[4] P. Levis , S. Madden , J. Polastre , R. Szewczyk , K. Whitehouse , A. Woo , D. Gay ,
J. Hill , M. Welsh , E. Brewer , TinyOS: an operating system for sensor networks,

Ambient Intelligence 35 (2005) 115–148 . others

[5] A. Dunkels , B. Gronvall , T. Voigt , Contiki - a lightweight and flexible operat-
ing system for tiny networked sensors, in: IEEE LCN, IEEE Computer Society,

Washington, DC, USA, 2004, pp. 455–462 .
[6] O. Gnawali , R. Fonseca , K. Jamieson , D. Moss , P. Levis , Collection tree protocol,

in: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, SenSys ’09, 2009, pp. 1–14 .

[7] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,
J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks, 2012, RFC 6550 (Proposed Standard).

[8] A. Reinhardt, O. Morar, S. Santini, S. Zoller, R. Steinmetz, CBFR: Bloom filter
routing with gradual forgetting for tree-structured wireless sensor networks

with mobile nodes, in: World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2012 IEEE International Symposium on a, 2012, pp. 1–9, doi: 10.

1109/WoWMoM.2012.6263685 .
[9] S. Duquennoy, O. Landsiedel, T. Voigt, Let the tree bloom: scalable opportunis-

tic routing with ORPL, in: Proceedings of the 11th ACM Conference on Embed-

ded Networked Sensor Systems, SenSys ’13, ACM, New York, NY, USA, 2013,
pp. 2:1–2:14, doi: 10.1145/2517351.2517369 .
[10] B.P. Santos, M.A. Vieira, L.F. Vieira, eXtend collection tree protocol, in: Wire-
less Communications and Networking Conference (WCNC), 2015 IEEE, 2015,

pp. 1512–1517, doi: 10.1109/WCNC.2015.7127692 .
[11] P. Levis , N. Patel , D. Culler , S. Shenker , Trickle: a self-regulating algorithm for

code propagation and maintenance in wireless sensor networks, in: Proceed-
ings of the 1st Conference on Symposium on Networked Systems Design and

Implementation - Volume 1, NSDI’04, 2004, p. 2 .
[12] B.N. Clark , C.J. Colbourn , D.S. Johnson , Unit disk graphs, Discrete Math. 86

(1–3) (1991) 165–177 .

[13] P. Levis , S. Madden , J. Polastre , R. Szewczyk , K. Whitehouse , A. Woo , D. Gay ,
J. Hill , M. Welsh , E. Brewer , TinyOS: an operating system for sensor networks,

Ambient Intelligence 35 (2005) 115–148 . others
[14] P. Levis, N. Lee, M. Welsh, D. Culler, Tossim: Accurate and scalable simulation

of entire TinyOS applications, in: Proceedings of the 1st International Confer-
ence on Embedded Networked Sensor Systems, SenSys ’03, ACM, New York,

NY, USA, 2003, pp. 126–137, doi: 10.1145/958491.958506 .

[15] J. Eriksson , F. Österlind , N. Finne , N. Tsiftes , A. Dunkels , T. Voigt , R. Sauter ,
P.J. Marrón , Cooja/mspsim: interoperability testing for wireless sensor net-

works, in: Proceedings of the 2Nd International Conference on Simulation
Tools and Techniques, Simutools’09, 2009, pp. 27:1–27:7 .

[16] N. Baccour , A. Koubâa , L. Mottola , M.A. Zúñiga , H. Youssef , C.A. Boano , M. Alves ,
Radio link quality estimation in wireless sensor networks: a survey, ACM

Trans. Sen. Netw. 8 (4) (2012) 34:1–34:33 .

[17] M. Bezunartea, M. Gamallo, J. Tiberghien, K. Steenhaut, How interactions be-
tween RPL and radio duty cycling protocols affect QoS in wireless sensor net-

works, in: Proceedings of the 12th ACM Symposium on QoS and Security for
Wireless and Mobile Networks, Q2SWinet ’16, ACM, New York, NY, USA, 2016,

pp. 135–138, doi: 10.1145/2988272.2988279 .
[18] C.E. Perkins , E.M. Royer , Ad-hoc on-demand distance vector routing, in: Second

IEEE Workshop on Mobile Computing Systems and Applications, 1999. Pro-

ceedings. WMCSA’99, 1999 .
[19] D. Johnson , Y. Hu , D. Maltz , et al. , The dynamic source routing protocol for

mobile ad hoc networks, Technical Report, RFC 4728, 2007 .
[20] Dynamic manet on-demand (AODVV2) routing draft-ietf-manet-dymo-26.,

2013, (http://tools.ietf.org/html/draft-ietf-manet-dymo-26).
[21] N.d.S.R. Júnior , M.A. Vieira , L.F. Vieira , O. Gnawali , Codedrip: data dissemina-

tion protocol with network coding for wireless sensor networks, in: Wireless

Sensor Networks, Springer, 2014, pp. 34–49 .
22] R. Fonseca , O. Gnawali , K. Jamieson , P. Levis , Four-bit wireless link estimation.,

HotNets, 2007 .
23] MultiHopLQI., 2014, (http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/).

[24] A. Woo , T. Tong , D. Culler , Taming the underlying challenges of reliable mul-
tihop routing in sensor networks, in: International Conference on Embedded

Networked Sensor Systems, ACM, 2003 .

[25] B.P. Santos, L.F. Vieira, M.A. Vieira, CGR: centrality-based green routing for low-
power and lossy networks, Comput. Networks (2017), doi: 10.1016/j.comnet.

2017.09.009 .
26] S. Dawson-Haggerty , T. Arsalan , C. David , Hydro: a hybrid routing protocol

for low-power and lossy networks, in: First IEEE International Conference on
Smart Grid Communications (SmartGridComm), 2010, IEEE, 2010, pp. 268–273 .

[27] U. Palani, V. Alamelumangai, A. Nachiappan, Hybrid routing and load balancing
protocol for wireless sensor network, Wireless Netw. (2015) 1–8, doi: 10.1007/

s11276- 015- 1110- 1 .

28] M.N. Moghadam, H. Taheri, M. Karrari, Multi-class multipath routing pro-
tocol for low power wireless networks with heuristic optimal load dis-

tribution, Wireless Pers. Commun. 82 (2) (2015) 861–881, doi: 10.1007/
s11277- 014- 2257- 2 .

29] M.A . Lodhi, A . Rehman, M.M. Khan, F.B. Hussain, Multiple path rpl for low
power lossy networks, in: Wireless and Mobile (APWiMob), 2015 IEEE Asia Pa-

cific Conference on, 2015, pp. 279–284, doi: 10.1109/APWiMob.2015.7374975 .

[30] X. Wang , H. Cheng , Y. Yao , Addressing-based routing optimization for 6LoW-
PAN wsn in vehicular scenario, IEEE Sens. J. 16 (10) (2016) 3939–3947 .

[31] X. Wang , Q. Sun , D. Wang , Addressing for 6LoWPAN WBAN, Comput. Methods
Prog. Biomed. 137 (C) (2016) 353–363 .

32] B.S. Peres, O.A.d.O. Souza, B.P. Santos, E.R.A. Junior, O. Goussevskaia,
M.A.M. Vieira, L.F.M. Vieira, A.A.F. Loureiro, Matrix: Multihop address alloca-

tion and dynamic any-to-any routing for 6LoWPAN, in: Proceedings of the 19th

ACM International Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems, MSWiM ’16, ACM, New York, NY, USA, 2016, pp. 302–

309, doi: 10.1145/2988287.2989139 .
[33] B.S. Peres, O. Goussevskaia, IPv6 multihop host configuration for low-power

wireless networks, in: 2015 XXXIII Brazilian Symposium on Computer Net-
works and Distributed Systems (SBRC), 2015, pp. 189–198, doi: 10.1109/SBRC.

2015.31 .

[34] E. C. Perkins, D. Johnson, J. Arkko, Mobility Support in IPv6, Technical Report,
RFC 6275, 2011.

http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0001
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0002
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0003
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0004
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0005
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0006
https://doi.org/10.1109/WoWMoM.2012.6263685
https://doi.org/10.1145/2517351.2517369
https://doi.org/10.1109/WCNC.2015.7127692
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0010
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0011
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0012
https://doi.org/10.1145/958491.958506
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0014
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0015
https://doi.org/10.1145/2988272.2988279
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0017
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0018
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0018
http://tools.ietf.org/html/draft-ietf-manet-dymo-26
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0019
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0020
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0020
http://www.tinyos.net/tinyos-2.x/tos/lib/net/lqi/
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0021
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0021
https://doi.org/10.1016/j.comnet.2017.09.009
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0023
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0023
https://doi.org/10.1007/s11276-015-1110-1
https://doi.org/10.1007/s11277-014-2257-2
https://doi.org/10.1109/APWiMob.2015.7374975
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0027
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0028
http://refhub.elsevier.com/S1389-1286(18)30177-4/sbref0028
https://doi.org/10.1145/2988287.2989139
https://doi.org/10.1109/SBRC.2015.31

B. Peres et al. / Computer Networks 140 (2018) 28–40 39

nce from Pontificia Universidade Catolica de Minas Gerais (Puc Minas) (2012) and M.Sc.
s Gerais (UFMG) (2015), where she is currently pursuing the PhD Her current research

ter networks.

at the Universidade Federal de Minas Gerais (UFMG). He received his M.S. at the Univer-
arch interest is in Computer Networking.

uter Science from Universidade Federal de Minas Gerais (UFMG), where he is currently

rest is in Computer Networking.

niversidade Federal de Minas Gerais (UFMG). She received her doctor degree in computer
ogy (ETH Zurich). Her main research interests include modeling, algorithm design and

s, such as communication networks and complex networks.

t the Universidade Federal de Minas Gerais (UFMG). He received his undergraduate and
o Horizonte, and M.S. and Ph. D. degrees in Computer Science from the University of

uter Networking.

e Universidade Federal de Minas Gerais (UFMG). He received his undergraduate and M.S.

onte, and Ph. D. degree in Computer Science from the University of California Los Angeles
Bruna S. Peres received the B.S. degree in Computer Scie
in Computer Science from Universidade Federal de Mina

interests include algorithm design and analysis for compu

Bruno P. Santos is a PhD candidate in Computer Science
sidade Federal de Minas Gerais in Belo Horizonte. His rese

Otavio A. de O. Souza received the B.S. degree in Comp

pursuing the M.Sc. in Computer Science. His research inte

Olga Goussevskaia is a professor of computer science at U
science in 2009 from Swiss Federal Institute of Technol

analysis of problems related to different kinds of network

Marcos A. M. Vieira is a Professor of Computer Science a
M.S. at the Universidade Federal de Minas Gerais in Bel

Southern California (USC). His research interest is in Comp

Luiz F. M. Vieira is a Professor of Computer Science at th

at the Universidade Federal de Minas Gerais in Belo Horiz

(UCLA). His research interest is in Computer Networking.

40 B. Peres et al. / Computer Networks 140 (2018) 28–40

es in computer science from the Federal University of Minas Gerais (UFMG), Brazil, and

y of British Columbia, Canada. Currently, he is a full professor of computer science at
oc networks. His main research areas are wireless sensor networks, mobile computing,

lished regularly in international conferences and journals related to those areas, and also
Antonio A.F. Loureiro received his B.Sc. and M.Sc. degre

the Ph.D. degree in computer science from the Universit
UFMG, where he leads the research group in mobile ad h

and distributed algorithms. In the last 10 years he has pub

presented tutorials at international conferences.

	Matrix: Multihop Address allocation and dynamic any-To-any Routing for 6LoWPAN
	1 Introduction
	2 Design overview
	2.1 MHCL: Multihop Host Configuration for 6LoWPAN
	2.2 Control plane: distributed tree structures
	2.3 Data plane: any-to-any routing
	2.4 Fault tolerance and network dynamics
	2.5 Alternative routing: geometric rationale

	3 Complexity analysis
	4 Evaluation
	4.1 Simulation setup
	4.2 Results

	5 Related work
	6 Conclusions and future work
	 Acknowledgements
	 References

