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Abstract—In this work, we argue that Location-Based Social
Media (LBSM) feeds may offer a new layer to improve traffic
and transit comprehension. Initially, we showed the significant
correlation between Twitter’s feed and traditional traffic sensors.
Then, we presented the Twitter MAPS (T-MAPS) a low-cost
spatiotemporal model to improve the description of traffic condi-
tions through tweets. T-MAPS enhance traditional traffic sensors
by carrying the human lens into the transportation system. We
conducted a case study by running T-MAPS and Google Maps
route recommendation, in which, we showed T-MAPS viability,
as an additional traffic descriptor. As a result, we noticed the
median of route similarity reached 62%, and for a quarter of
the evaluated trajectories, the similarity achieved between 75%
and 100%. Also, we presented three route description services,
based on natural language analyzes, Route Sentiment (RS), Route
Information (RI), and Area’ Tags (AT) aiming to enhance the
route information.

I. INTRODUCTION

The transport infrastructure might be able to promote peo-
ple’s movement efficiently, but it also implies in the constant
need for planning and management of the transportation
system. In this sense, understanding urban mobility (traffic
and transit) has been the focus of governments, researchers,
and industries [1]. Usually, traffic and transit specialists use
traditional raw data sources (e.g., data from inductive loops,
traffic cameras, and origin-destination matrix) to perform their
analyzes. Unfortunately, the access to these data sources is, in
general, limited to those who are connected to governmental
entities or large corporations, it covers a limited scope and
has a high financial cost to access and use it. This becomes a
barrier to understand better urban mobility that asks for other
solutions.

In that way, the Location-Based Social Media (LBSM) (e.g.,
Twitter, Instagram, and Foursquare) becomes an alternative
data source to study urban mobility. These platforms allow
users to share their thoughts, viewpoints, and activities related
to their feelings about almost everything, which include traffic
conditions. There are different research issues which benefit
from using LBSM as a low-cost data source [1], [2], [3], [4].

According to the Twitter, about 330 million users are active
every month in their network. This considerable attendance
may open up several opportunities. In this work, we inves-
tigated the traffic scenario in the lens of LBSM. However,
data from those social media also brings issues that can lead
to other challenges such as data imprecision, users’ bias,
and spatiotemporal assignment or inconsistency. Therefore, we

should overcome those data issues before making complete use
of LBSM’s data.

We conducted a study to understand better the relationship
between the real traffic scenario and the data provided by
Twitter, a very well-known and largely used LBSMs platform.
Initially, we focused on the data collection and its character-
ization. Then, we proposed the Twitter MAPS (T-MAPS), a
low-cost spatiotemporal model to improve the description of
traffic conditions based on tweets. T-MAPS intends to enhance
the current navigation context by connecting LBSM’s data in
different ways, for example, by evaluating tweets frequency
or users’ perspective of a region of interest.

Based on that, we collected tweets from New York City
(NYC for short) demonstrating its coverage and the traffic
factor correspondence. Then, we proposed and evaluated the
T-MAPS applicability by showing its route similarity with
Google Maps recommendations, also we provided three route
description services upon T-MAPS: Route Sentiment (RS),
Route Information (RI) and Area’ Tags (AT). We highlighted
two main contributions: 1) The LBSM data characterization,
especially from Twitter, as a data source to better understand
and describe the traffic conditions. 2) The proposition of
T-MAPS as a model to enrich route description.

An important question emerges from the inherent subjec-
tivity of enriching the traffic description, as we proposed. To
the best of our expertise, there is no ground truth for the best
route. For that reason, many tools aim to offer their traffic
viewpoint like Google Maps, Here Wego, and TomTom maps.
The main reason which motivated us to develop the T-MAPS
was the desire to demonstrate the potential of using LBSM
data, as a traffic data. Also, we aim to encourage the design
of new applications, models, and analysis of urban mobility
using LBSM.

This paper is organized as follows. In Sec. II, we presented
the related works. In Sec. III, we detailed the collected data
and its issues. In Sec. IV, we showed the correlation between
LBSM and traffic sensors data. In Sec. V, we presented
the T-MAPS modeling process. We showed a case study in
Sec. VI. Sec. VII showed the route description services, which
aims to improve the information about the route. Finally, in
Sec. VIII, we presented the final remarks and future directions.



II. RELATED WORK

In the literature, there are many studies about event de-
tection and diagnostics using LBSMs [5], [6], [7]. Most of
them focuses on detect general events and use language pattern
recognition to understand events. Ribeiro et al. [3] proposed a
technique to detect traffic events and displayed them in near
real-time on the web. Similarly, Septiana et al. [8] used a text
mining system on RSS feed Facebook E100 (a page to provide
transit information) aiming to categorize road condition into
six types as floods, traffic jams, congested roads, road damage,
accidents, and landslides. They showed an accuracy of 92%
in the road condition monitoring.

Some proposals [9], [10] studied sentiment analysis by using
LBSMs data. Bertrand et al. [9] studied the sentiment in NYC
from a spatiotemporal perspective in a high-resolution. Kim
et al. [4] proposed SocRoutes, a safe route recommending
system, based on Twitter data. Giridhar et al. [11] focused
on explaining unusual traffic events using social media feeds,
but their work does not provide ways to recommend routes.

Gu et al. [12] explored tweets text aiming to extract traffic
incident information providing a low-cost solution to existing
data sources. In that way, they developed a methodology
to the data acquisition, process, and filtering. Gu validated
the Twitter-based incidents using data from RCRS (Road
Condition Report System) incident, 911 Call For Service
(CFS) incident, and HERE travel time.

Differently, from the most of above-related works, we are
going beyond by providing a model to clarify the traffic con-
dition, adding extra information to the current navigation sys-
tems. Besides, T-MAPS model is flexible enough to consider
instantaneous and historical data, and text mining techniques.
In that sense, we provide three route description services
examples over T-MAPS model: Route Sentiment (RS), Route
Information (RI), and Area’ Tags (AT). These services show
T-MAPS viability as a tool to offer extra information about
routes.

III. DATA ACQUISITION

One of the most significant challenges to study urban mobil-
ity is the absence of open data in such context. Therefore, most
of the work in this field lies in the theoretical studies or has a
large private data provider (e.g., government agencies, Google,
Tomtom among others.). Fortunately, the growing LBSMs
adoption allows people to share on online platforms their
thoughts, viewpoints, and activities. All this content is related
to users’ feelings and impressions, including the traffic and
transit conditions. With the right tools and code, we were able
to collect data from Twitter, where many users periodically
share information about traffic and transit events. For this end,
we used the Twitter’s APIs respecting the restriction terms1.

The dataset consists of 353.807 tweets from twenty-one
manually selected users accounts. Those accounts are main-
tained by departments of transport, specialists on traffic and
transit reports such as news channels or dedicated companies.

1https://developer.twitter.com/en/docs

TABLE I
EXAMPLE OF USERS

Account name # Tweets
@511NYC 126925
@TotalTrafficNYC 20267
@WazeTrafficNYC 7850
@Traffic4NY 3789
... ...
@NYC DOT 3680

Total: ≈ 354K Fig. 1. Tweet example in the dataset

Tab. I shows some accounts and its tweeting frequency. The
number of tweets with geotagging is 307.020, most of them in
NYC. Here, we explored Manhattan where has 38.112 tweets.
The dataset was collected during the last three months of 2016.

Fig. 1 displays a tweet in the dataset. The tweet consists of a
rich explanation of the traffic event (textual address, the cause
of the event and even delays). Also, the meta-data contains
post time, a geotag signature, counters (e.g., retweets and
likes). The dataset does not contain regular users due to the
high user bias in their tweets regarding traffic feelings. Next,
we analyze some aspects which involve the use of LBSM‘
data, and then the spatiotemporal characteristics of data which
provided some initial insights.

a) Data issues: Often data from Twitter has aspects that
lead to issues in its use on traffic context. In [13], [14], the
authors classify a variety of data aspects. Here, we highlight
four of them: i) Data imprecision: presents incomplete data,
vagueness or granularity effects, usually the inherent hetero-
geneity of the data sources and “freedom” of data input on
online platforms promote such aspect; ii) User bias: LBSM
users can interpret the traffic congestion in different ways
introducing bias into the data; iii) Spatiotemporal assignment:
the geolocation and temporal tagging allow traffic specialists
to study and characterize a region at any instant or time
interval, and iv) Inconsistencies: appears when two or more
data sources diverge about a specific event or when traffic and
transit information are out of sequence into the system.

(a) Tweets on NYC map (b) Spatial coverage of two users

Fig. 2. Dataset coverage in New York City and neighborhood

b) Spacial coverage: Fig. 2(a) shows tweets with geo-
tagging in the dataset. Most tweets are over the road network,
i.e., if we do zoom in, it is possible to see the I-95 highway
with tweets along its extension. Also, the central region
presents higher tweets density than non-central ones, which
can indicate a tendency of the user’s preferred region to
report information. Fig. 2(b) shows the filtered dataset with
tweets from @TotalTrafficNYC and @511NYC. As expected,



we note that different accounts have contrasting coverage.
While @511NYC focused on reporting traffic information
within NYC boundaries, @TotalTrafficNYC exhibited broader
coverage. Aware of this characteristic, one might use as many
as possible spatial complementary accounts to cover a region.

(a) Weekly tweeting density (b) Hourly tweeting density

Fig. 3. Temporal coverage of three accounts for one week

c) Temporal coverage: In Fig. 3(a), we show the tweets’
density along the week for @NYC DOT, @TotalTraffic-
NYC, and @511NYC users. As expected, different ac-
counts have disparate behavior in their posting rate. Although
@NYC DOT posts mainly on working days, @TotalTraffic-
NYC and @511NYC do postages every day. However, they
still have a different tweeting rate behavior as shown in
Fig. 3(b) displaying the hourly tweeting density. The most
of the @NYC DOT posts occur during business hours, while
@TotalTrafficNYC and @511NYC post along the day. Note
that some peaks of tweets appear during rush times. For
example, @TotalTrafficNYC presents high post volume from
7:00 AM to 10:00 AM; this suggests that traffic events occur
while people are starting their daily activities. The peaks
also appear in @511NYC’s curve, one at 12:30 PM – 3:00
PM, another in 5:30 PM – 8:00 PM, and in 9:00 AM –
12:00 PM suggesting high posting rate at lunchtime, another
when people are finishing their business day, and when people
are starting their nightlife, respectively. Thus, one might use
complementary accounts to increase the temporal coverage.

IV. TWITTER AS A TRAFFIC SENSOR

To reveal the potential of LBSM data to enhance and
complement the conventional ways to see traffic and transit, it
is fundamental the understanding of how related the tweets are
to the traditional traffic sensor. For example, if a conventional
traffic sensor detects an anomalous event, can tweets explain
such atypical event? This section presents directions to answer
questions like this.

First, it is required to get access to classic traffic mea-
surement data, such as inductive loop detector counts, traffic
cameras, vehicle GPS traces on road network, or origin-
destination matrices, among others. With these data, traffic
specialists can study demand and supply aspects. Demand can
be seen as vehicles and pedestrians while supply is related to
streets, highways, sensors and control devices [1]. Thus, it is
possible to study the interactions between demand and supply,
and eventually develop efficient transportation systems, which
optimize urban mobility and decrease transit congestion.

Fig. 4. Tweets frequency and Here Jam Factor time series

Fig. 5. Cross-correlation between Jam Factor and # tweets time series

Unfortunately, the access to raw traditional sensor data is a
challenge for the regular community. Raw traffic data are kept
locked by government entities or large companies. Usually, the
traditional sensors sense three variables of interest: velocity,
density, and flow. These quantities relate to each other allowing
traffic behavior analyses and visualizations [1], [15]. On the
other hand, LBSMs data is more accessible, which allows
urban mobility studies [1], [2]. Also, it is common that users
share their thoughts, viewpoints, and activities on LBSM
platforms. It expands the sensing capacity by capturing the
users’ perspective about the situation.

Naturally, raw data holders perform some data fusion pro-
cess and present the result in their services or statistics. For
example, Google gathers heterogeneous data such as GPS
traces, cameras, and inductive loops. Thus it makes a data
fusion process and presents the results of traffic conditions
in colors over the map. In that way, companies like Google,
Here, and TomTom allow access to the resulting data fusion
process. In this work, we use the Jam Factor (JF) from HERE
API as aggregated traditional traffic sensor data. According to
the Here documentation, the JF is a fused representation of
traditional heterogeneous data. JF ranges from 0 to 1 (from
free to congested). We chose Here JF since no other company
provides such kind of data.

Fig. 4 shows the correlation between Here JF and tweets in
the dataset along a week in Oct. 2016. The time series in blue
is the aggregated Here JF, and the orange one corresponds
to the number of tweets. We re-scale tweet time series to
lie between 0 and 1, and we aggregated each series hourly.
Then, we observe that the curves are similar. We compute the
Spearman’s rank (ρ) a nonparametric correlation coefficient to
identify relationships between two variables. The ρ has a value
between −1 and +1, where −1 means the observations are
entirely dissimilar and +1 the opposite. We apply Spearman’s
rank in the time series resulting in ρ = +0.81. It is possible
to interpret that the #tweets tend to increase when the JF
increases.

Applying the cross-correlation technique, it is possible to



figure out where time series match [16]. Fig. 5 shows on the
y-axis the cross-correlation between JF and #tweets, and on
the x-axis the lag between the time series, we use JF as the
test waveform. The highest correlation (0.8) appears when the
lag is +1 meaning that #tweets curve is 1 hour ahead of JF.
One can interpret that tweets appear on the platform before JF
increases, but note that the time series were hourly aggregated.

V. MODELING PROCESS OF TWITTER MAPS (T-MAPS)

The T-MAPS is a low-cost spatiotemporal model which
aims to clarify traffic events through tweets. This model
allows the representation of the traffic scenario in different
aspects by considering instantaneous or historical data, and its
text mining. Following, we presented the three steps of the
modeling process.

1. Data acquisition: this step consists of segmenting the area
of interest and retrieving data from the LBSMs platforms.
It is possible to segment the region of interest in several
resolutions, ranging from micro (at the level of roadways and
streets segments) to macro resolutions (those at the level of
entire roads, boroughs, city). The segmentation resolution may
be adjusted to fit the spatial coverage of the data.

2. Filtering and data fusion process: this step aims to
filter and bind LBSM’s data to the segmented region. We
propose the use of a weighted time-varying digraph as a
model to map these areas and data. The time-varying digraph
is represented as a series of static networks, one for each
time step. Formally, let R be the set of segments of the
region, then a snapshot digraph is defined as Dt = (V,E,m),
where V = {r|r ∈ R} denotes the segmented region, and
E = {(u, v) ∈ V |u is adjacent to v in R segmentation}
denotes the directed edges between physically connected re-
gions, and m is the weights (discussed below). The T-MAPS’s
time-varying digraph is a sequence of snapshot digraphs, thus
T-MAPS(D) = {Dt=tmin , Dt+∆, . . . , Dtmax}, where tmin and
tmax are the start and end time of the available dataset, and ∆
can be adjusted conveniently.

3. Metrics: it consists of assigning cost weights to the directed
edges. Formally m(u,w) : E → value, where m(u,w) is a
function mapping the directed edges to a metric cost. The
metric function represents the analyzed traffic scenario using
the LBSM data. Fig. 6 illustrates a simple example of the
T-MAPS modeling process. First, we segmented the NYC map
into five regions of interest, then we collected LBSM available
data. Next, we obtained the digraph G = (V,E,m), where V
are the regions, and E are directed edges between adjacent
regions. Then, we bound Twitter’s traffic data to the resulting
regions graph. Finally, the weights are assigned to the edges
using different metric functions. The resulting time-varying
digraph allows us to analyze the traffic scenario condition and
description. We present some metric functions below:

Instant: this metric function considers all tweets in a given
time t on a day by fusing and filtering them properly. This
strategy corresponds to a snapshot view of the traffic at that
moment. The smallest t must agree with the configured ∆ of

Fig. 6. T-MAPS’s modeling process

T-MAPS model. Usually, instantaneous data are sparse and
poorly cover the region of interest. However, this data may
highlight a particular event at a given time.

Accumulated: this metric considers all previously available
data for a given time. It requires two parameters, tstart and
treference, where tstart < treference and it must respect the temporal
dataset availability. It accumulates all data between tstart and
treference. One can interpret this metric as a historical metric
looking to the past until the reference time point. In our
experiments tstart = tmin.

Average: it uses the same approach of Accumulated. However,
the value assigned to the edges are the average of tweets’
occurrences over the time, such as day, week and year. This
information must be passed as a parameter to the metric
function. One can interpret it as a typical traffic condition
metric, putting into the account the historical information.

VI. A CASE STUDY

We conducted a case study to demonstrate the T-MAPS
potential. In that sense, we first compare the T-MAPS, and
Google Direction (GD) routes recommendation similarity. Af-
terward, we presented three route description services demon-
strating the T-MAPS’ potential as well as others opportunities
to enhance and clarify the traffic scenario description. The
following results corresponded to the Manhattan region seg-
mentation and the data collected (Sec. III). The region was
segmented into 29 official neighborhoods. Consequently, the
T-MAPS’ digraph snapshot contains 29 vertices. We removed
all tweets outside the Manhattan region. Besides, the minimum
time interval between two consecutive T-MAPS graphs corre-
sponds to a ∆ = 1 hour. Although T-MAPS was designed to
accommodate both data resolution (micro and macro), in the
case study was used a macro viewpoint due to data coverage
limitation.

A. T-MAPS Applicability

We evaluated the T-MAPS applicability by comparing its
similarity, in recommend routes, with GD. Note that the
T-MAPS route suggestion considers a macro resolution of
the regions on the map, but our model is flexible enough to
encompass fine-grained resolution as well if there is enough



data for this. From a macro resolution, T-MAPS aims to
recommend regions which have the best conditions regarding
the applied metrics.

We query the T-MAPS and GD 812 to recommend routes
in Manhattan neighborhoods. The routes were derived from
the combination 2 × Cn

k , where n = 29 (Manhattan neigh-
borhoods) and k = 2 (origins and destinations). Note that we
considered routes like A → B and B → A. The routes start
and end at the center of the region. Also, we rule out routes
that start and end at the same local. We query the routes in
three different moments (7:00 am, 3:00 pm and 7:00 pm) of a
day along one week. Those moments were chosen purposely,
based on its rush hour representation, and its higher volume of
tweets in the dataset. Besides, the Here Jam Factor increases
on those moments as well as the frequency of tweets per hour
in the dataset, see Fig. 7.

Fig. 7. The frequency of tweets per hour in the dataset

The similarity technique measured the matched areas where
the recommended routes by T-MAPS (using Dijkstra’s algo-
rithm) and GD passed through. Fig. 8 displays the similarity
between routes along eight days in the dataset, considering
three metric functions. The box-plots summarize 58.464 routes
analyzed. T-MAPS with Instant metric showed a high variation
of similarity rate, its median range from 50% up to 66.7%,
while Accumulated metric shows 60% to 70% and Average
metric 60% to 66.7%. It means that more than a half of the
evaluated routes overlapped the GD. We expected that Instant
metric would pose the lowest similarity due to its intrinsic
disparity with other metrics since it does not consider the
historical data. As a global evaluation, the median of route
similarity reached 62% with Google Directions. Note that
T-MAPS uses a macro view, while GD does not, thus implies
in fewer regions per route by T-MAPS than GD. The upper
quartile (1/4 of the routes) until the maximum value exhibited
a similarity between 75% and 100% between the T-MAPS and
GD suggested routes.

VII. ROUTE DESCRIPTION SERVICES

Based on the applicability results, which demonstrated a
possibility to aggregate extra information to a current route
recommendation services, we move on to explore the tweet’s
texts. Initially, we performed the cleaning phase in the tweet
(lowercase transformation, accents removal, tokens extraction,
and filtering stops words, links, and special characters). Then,
we applied three type of text mining to build the descriptions

Fig. 8. Route recommendation similarity between T-MAPS and Google
Directions (dots represent the mean)

services over the T-MAPS model which are Route Sentiment
(RS), Route Information (RI), and Area’ Tags (AT). In Fig. 9,
we presented a prototype to offer the T-MAPS services.

The RS service showed in Fig. 9(a) allows us to observe the
feelings that LBSM users have about the region, in which they
will pass through. To derive the sentiment from tweet’s text,
we used a dictionary of words and its associated feelings [17].
Then the sentiment depends on the number of word/feelings
occurrences. Lastly, a score is calculated, and we can associate
a sentiment (positive, neutral or negative) to the tweet.

We also presented the RI service which exhibits for each
area a word cloud. The word size indicates the word frequency
over the tweets. RI allows the T-MAPS users to see what are
the most spoken words along with their route. In Fig. 9(b), we
can see relevant words like “cleared”, “incident” and “station”
highlighted in the cloud. These may indicate why the Midtown
South has a positive sentiment, and oppositely, Clinton with
words like “incident” derived a negative sentiment.

Finally, we developed the AT service. For that service, we
used the Term Frequency–Inverse Document Frequency (TF-
IDF) method to measure how important a word is to a set
of tweets in given area of Manhattan. The Fig. 10 shows the
area’ tags of each region of the path. This technique allowed
us to find words which are unique per area. For instance, the
Authority Port/Terminal is only in the Clinton area, as well
as the Upper West Side is one of the references with Parks to
visit. In both examples, the T-MAPS AT service may guide the
users to find places which are characteristic of a given area.

The T-MAPS services developed used the Accumulated
metric, aiming to characterize the Manhattan region, based on
our window observation. Any other metric can be applied to
provide a different description, achieving a different goal. With
these services (sentiment, route information and area’ tags),
the T-MAPS can enrich the current route recommendation
systems, indicating to the users an extra path description
or even providing routing based on these descriptions. For
instance, the user may choose a route which expresses good
feelings and beautiful environment. Alternatively, even, routes
which there are cultural activities.



(a) The Route Sentiment (RS) (b) The Route Information (RI)

Fig. 9. Route sentiment based on the tweets text analysis

Fig. 10. The Area’ Tags (AT) of each region of the path

VIII. CONCLUSIONS

In this work, we have presented the T-MAPS, a low-cost
spatiotemporal model to enhance traffic and transit navigation
context. T-MAPS bring to the navigation system, the LBSM
users lens about the traffic and transit. To do that, T-MAPS
uses time-varying digraphs, which models the area of interest
to attach LBSM data. We showed the model applicability

through a case study, where we compare the similarity between
our model and Google Direction route recommendation. The
results showed the median of route similarity reached 62%,
where T-MAPS uses region granularity while GD uses street
granularity. For a quarter of the evaluated trajectories, the
similarity achieved up to 100%. Also, we presented three
route description services, based on natural language analyzes,
Route Sentiment (RS), Route Information (RI), and Area’
Tags (AT) aiming to enhance the route information of current
navigation tools.

As future work, we intend to extend the T-MAPS routes
description by applying strategies to process the data and offer
more valuable information. For instance, how to extract, bind
and exhibit semantic information using T-MAPS? Besides that,
we aim to employ regular users accounts from LBSM and uses
reputation models to handle conflicting information.
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