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Abstract—In this work, we present Dribble a learn-based timer
scheme selector to manage topology changes caused by mobility
in the Internet of Things (IoT) context. IoT has turned smart
devices part of our everyday lives. They are in everywhere with
many shapes, sizes, and capabilities. For IoT to become even more
ubiquitous, it is necessary to overcome the challenges posed by
mobility. One of them is the management of topology changes,
especially at the network layer. Currently, routing protocols
check the topology through an advertisement timer scheme. Such
schemes face a basic trade-off between being fast to find topology
problems and concurrently be energy and overhead control saver.
Although there are timer schemes designed to mobile context, all
devices are governed by the same one, which is a hard assumption
since IoT is heterogeneous and naturally, devices have different
behaviors. Thus, Dribble learns the devices’ mobility pattern and
then it assigns a custom-made timer scheme conveniently for each
device. Our results show that personalized timer schemes present
better performance than single traditional timer schemes such as
Trickle Timer (TT) and Reverse Trickle Timer (RevTT).

Index Terms—IoT, Mobility, Trickle, Handoff management

I. INTRODUCTION

Smart devices have begun to be part of our daily routine.
They can be attached to infrastructures, wearable, and be
moving by itself. When those devices are networked and
connected to the Internet, they form the so-called Internet
of Things (IoT). Nonetheless, they introduce new challenges
from the network lens, because they are heterogeneous (e.g.,
TVs, smartphones, vehicles, etc.) and have different degrees
of freedom concerning mobility. Thus, manageability and
scalability are examples of key issues that ask for solutions,
especially when the mobility factor is present. Until recently,
most of IoT’s proposed solutions were for static networks [1].
Only a few attempts took the mobile context into consider-
ation [2], [3]. In the mobile and wireless environment, the
routing protocol is a key component to enable mobility to
the IoT. Mostly of routing protocols for mobile IoT have
one timer scheme that governs the communication structure
construction and maintenance by triggering from time to time
control advertisements.

The timer scheme must deal fairly with a basic trade-off.
If it is too greedy by sending advertisement frequently, it
responds quickly to topology changes, but it spends energy
and introduces an overhead to the wireless shared channel.
However, if the timer scheme is too slow, it saves energy and
bandwidth, but topology problems persist for a long time.

In order to balance this trade-off, we propose Dribble, a
learn-based timer scheme selector. To the best of our knowl-
edge, IoT networks are governed by a single timer scheme,
without concerning devices mobility properties. Dribble differs
from single timer schemes by setting a custom-made timer
scheme to devices conveniently. It does that through a machine
learning process that learns devices’ mobility patterns and
matches them to proper timer schemes. We evaluate Dribble
against traditional timers such as Trickle Timer (TT) and
Reverse Trickle Timer (RevTT) through extensive simulations.
Our analyzes show that Dribble presents a better trade-off
balance than a single timer scheme.

The rest of the paper is organized as follows. In Sec. II we
review routing in IoT. Sec. III states the timer scheme problem
and describes the related work. In Sec. IV, we present Dribble
workflow. Dribble evaluation is detailed in Sec. V. Finally, in
Sec. VI we highlight the final remarks and conclusions.

II. IOT ROUTING IN A NUTSHELL

In IoT, mobility-enabled routing protocols build structures
to perform multi-hop data forwarding in three main traf-
fic patterns: Multipoint-to-Point (M2P), Point-to-Multipoint
(P2M), and Point-to-Point (P2P). M2P is done by creating
a tree or Directed Acyclic Graph (DAG) oriented towards a
special device node (known as border router). By default, each
node maintains at least one preferred parent, which is used
to forward data (Fig. 1(a)). The M2P traffic pattern is cost-
efficient in terms of memory requiring few routing states.

P2M is the dual traffic pattern (from root to nodes). Pro-
tocols that support P2M build paths by using extra control
packets and routing states. Fig. 1(b) shows how a protocol
can create P2M paths1. By supporting both previous traf-
fic patterns, a protocol can combine them to provide P2P
communication (Fig. 1(c)). Several routing protocols were
proposed to support at least one IoT traffic pattern (e.g.,
eXtended Collection Tree Protocol (XCTP) [5], CodeDrip [6],
and Mobile Matrix [3]). IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL) [4] became de facto the standard
routing protocol for IoT. RPL is a distance vector protocol
that builds a Destination Oriented Directed Acyclic Graph
(DODAG).

1Note, there are others approaches to build P2M as presented in [2]–[4]
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Fig. 1. IoT’s common routing structures and data traffic patterns.

RPL introduces some control packets in order to build
routes: i) DODAG Information Object (DIO) advertises in-
formation allowing nodes to attach to DODAGs instances
and obtain its configuration, initially the root fires the first
DIO triggering a DODAG formation; ii) DODAG Information
Solicitation (DIS) is used by a node to ask for valid DODAG
instances nearby in its neighborhood, thus a DIS reception
causes DIO transmissions; iii) DODAG Destination Adver-
tisement Object (DAO) propagates destination information
towards the root (through selected parents from the destination
to root) intended to build P2M routes.

Most of IoT routing protocols (e.g., RPL and Mobile Ma-
trix) relies on two key components to construct and maintain
their routing structures: a routing metric and a timer scheme.
The former, it is focused on expressing the link quality. Well
known IoT routing metrics such as ETX and 4-Bit are useful
to catch the highly dynamic and busty behavior of wireless
technologies employed (e.g., IEEE 802.15.4) [3], [4], [7],
regularly the metric is advertised into control packets (e.g.,
DIOs) helping nodes to find best paths. The focus of this work
is on the timer schemes which concerns the firing interval
between consecutive control packets advertisements.

III. RELATED WORK AND PROBLEM STATEMENT

Mobility is a major factor present in everyday life, thus
the mobility of “things” is a natural event in the cyber-
physical space. In IoT, even reduced device mobility can cause
topology changes due to, for instance, the short-range wireless
link technologies (e.g., IEEE 802.15.x). In such a situation, the
routing protocol must rebuild routes to reflect the new topo-
logical organization as soon as possible mitigating network
disconnections. Protocols advertise control packets from time
to time to manage the routing structure. In RPL, an node can
re-attach to a DODAG upon receiving a DIO (upwards routes)
and then it transmits DAOs to build downwards routes.

The timer scheme governing the control advertisements
plays a fundamental role to achieve the desired network per-
formance. However, it faces a basic trade-off. If it frequently
schedules advertisements, i.e., a small interval between con-
secutive beacons, it can quickly respond to topology problems

at a cost of energy and channel overhead. On the other
hand, if a timer scheme occasionally (large interval) advertises
control packets, devices use less energy and bandwidth, but
topological inconsistencies will persist for a long time.

In the literature, few attempts have been made to fill this
gap, especially in IoT environments where mobility is present.
The vanilla approach periodically sends advertisements in a
fixed interval. However, the scheme leaves to the trade-off con-
trol to the network operator. Often, protocols use the adaptive
beaconing Trickle Timer algorithm [8]. TT advertises control
packets faster when topological inconsistencies occur in the
routing structure, otherwise, it decreases the advertisement rate
exponentially. The RPL specification suggests TT with 2.3 h
as maximum period [4]. Therefore, a node can wait a long
time before sending a control packet, which turns the tracking
of topology problems an issue to standard RPL.

Reverse Trickle Timer algorithm [9] works in an opposite
fashion than TT. It starts with a large interval between ad-
vertisements, then it halves the interval after each advertises
fired. The authors argue that RevTT is suitable for mobile RPL
networks where a mobile node attaches to a parent (preferably
static), then it likely remains connected to this parent for a
long time. As long as the node remains connected to the same
parent, it is likely to that node moves away. This justifies a
large initial interval and the short interval after long periods.

Besides those approaches, there are some proposals in the
literature that make hard assumptions (e.g., knowledge about
parent position) to operate [2], [10]. Also, vehicular networks
is another field witch widely explore the benefits of adaptive
beaconing approaches [11]–[13]. Those proposals focus on
increase delivery rate and reduce the channel overload which
is important for safety applications and routing protocols.
However, they were not proposed to constrained IoT’ devices.

Different from previous proposals, we do not propose a new
timer scheme. Instead, we propose a selector to set a custom
timer scheme given the mobility pattern of an IoT device.
We advocate that by matching timer schemes to well-known
mobility patterns, it is possible to balance the posed trade-off.
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Fig. 2. Dribble pipeline.

IV. DRIBBLE: THE TIMER SELECTOR DESIGN

In this section, we detail Dribble, a learn-based timer
scheme selector that helps IoT routing protocols to manage
the mobility. Dribble learns the devices mobility patterns and
then it assigns a customized timer scheme to each node in a
distributed fashion. We have designed Dribble to be as generic
as possible. Its method can be applied in a range of network
topologies and sizes, though we have evaluated it to small
scale IoT network such as a campus or building environments
(see Sec.V).

Fig. 2 shows the Dribble pipeline process. It consists of
the following stages: i) Entities (mobile or not) that Dribble
intends to learn they mobility behavior; ii) Mobility Metrics
that allow to Dribble to sense entities individually and use
such information as input in the next stage; iii) A learn-based
model (e.g., a neural network) which aims to classify the entity
mobility pattern; iv) The time scheme matching in which, a
specialist network operator manually matches the available
timer schemes to a proper mobility pattern;

A. Entities

“Things” or just entities are the generic names referring
to the devices employed in the IoT. Entities are of different
types (e.g., TVs, home cleaners, vehicles, smartphones, etc.).
Also, entities have a context (e.g., a place, a state, etc.). Here,
we are interested in the mobility context. Although mobility
can be studied in a broad spectrum, we just kept the mobility
context simple by classifying entities into having mobility or
no. For those entities that have mobility, we divide them into
human-like and non-human mobility behavior. The context of
the entities is obtained through sensing elements that also have
a wide spectrum [14], e.g., sensors like GPS or accelerometer.
Aware of the entities’ context it is possible to design custom
solutions as Dribble proposal.

B. Mobility Metrics

By using sensing elements, it is possible to study the entities
mobility patterns. To do that, mobility metrics can be applied
over the data caught from sensors. In [15], [16], the authors
present and classify mobility metrics into spatial, temporal,
and social classes. Spatial and temporal metrics describe
how an entity behaves in the space domain and its rhythm
over the time. Social metrics can describe the relationship
(connectivity) between other entities.

In order to develop Dribble selector, we deliberately choose
four metrics to capture temporal, spatial, and social properties
from entities: i) Speed: it is the average node speed; ii) Travel

Distance (TD): it is defined as the distance traveled between
two consecutive locations; iii) Visit Time (VT): it is the time
spent in each location visited by an entity; iv) Contact Entropy
(CONEN): it measures the diversity of contacts of an entity
based on Shannon’s entropy. Entities with high CONEN value
meet several other entities frequently and almost homoge-
neously. Otherwise, low CONEN values imply in low diversity
and dissimilar meetings. These metrics were chosen due to
their simplicity, thus IoT’s commodity devices with some
sensors (e.g., GPS or accelerometer) are able to compute them.
For more mobility metrics details see [15], [16].

C. Learn-based Model

The next stage of Dribble’s pipeline is to learn, through
sensed data, the entities mobility context: static and mobile
(human-like and non-human). Here, we have a classical clas-
sification or clustering problem. Although we have tested
different models ranging from supervised to unsupervised,
we focused on supervised models since we can obtain la-
beled data. We choose the Multi-Layer Perceptron (MLP)
classifier as learning algorithm [17]. MLP learns a function
f(·) : Rm → Rp, where m is the mobility metrics and
p are the mobility patterns. One benefit of MLP is that it
can learn a non-linear function for classifying more complex
mobility context. Concerning applicability in IoT devices, our
experiments show that a basic MLP can be applied to predict
accurately the nodes mobility patterns.

D. Timer Scheme Matching

The timer scheme matching is a key stage of Dribble.
Traditionally, just one timer scheme governs the entire IoT
network, which is a hard-assumption, especially if the network
entities present mobility. However, in Dribble, the main goal is
to set a specific timer scheme for each entity conveniently. This
makes sense since entities have different roles, capabilities,
and behavior. Thus, they should have different timer schemes.

Currently, Dribble relies on a specialist to make the match-
ing between mobility patterns and timer schemes. To do
that assignment, the specialist needs to understand the mo-
bility pattern, and which is the timer scheme more suitable.
However, this is a hard task, thus to mitigate this burden,
the network specialist can use the simulation methodology
applied in Sec. V to support its decision. Also, it is expected
that entities change their mobility behavior over time. For
example, humans sometimes behave like a static entity (e.g.,
in an office), sometimes as a mobile entity (e.g., moving in a
grocery). Dribble can re-evaluate the entity mobility pattern by
just redoing its process. However, the network operator must
set when the re-evaluation should be done.

V. EVALUATION

In this section, we describe Dribble performance evaluation
against the baseline Periodic fixed timer scheme, Reverse
Trickle scheme as well as the widely used Trickle algorithm.
Also, we present Dribble intermediate stage results.



TABLE I
DEFAULT SIMULATION PARAMETERS

Simulation setup

Duration 15 days
# of Nodes 200
Base station 1 center
Distribution Random
Radio range 200 m UDG
DIM 1500 m X 1500 m
# of random topologies 15
Transmission Model CC2420-like

Timer schemes

Trickle and Reverse Trickle min = 2 s, max = 1024 s
Periodic 90 s

The evaluation process was conducted on Sinalgo simula-
tor [18] and we use the standard RPL as routing protocol [4].
Our RPL implementation has the three data traffic patterns
(M2P, P2M, and P2P) enabled, storing and no-storing modes
as well as hop-count and ETX as Objective Functions. The
RPL specification does not define how and when DIS packets
should be sent and also how an unreachable parent should be
removed from the preferred parent set. Those mechanisms play
a significant role to react upon topology changes, especially
derived from mobile nodes. In this sense, we implement a
simple but not the most efficient alternative. After a node
attaches to a parent, it waits for a small acknowledgment
from the parent for every DIO sent. Then, if a node is
not acknowledged, then it purges the parent from preferred
parent set and enters in floating DODAG state [4]. Next,
it triggers DIS packets try to re-attach to a valid DODAG.
In mobile scenarios, authors have recommended that mobile
nodes should prioritize static nodes as a parent [2], [3], [9],
we also implement this feature.

Table I lists the default simulation environment parameters.
Our simulation ran in random network topologies composed
of 200 nodes. In all topologies, one fixed node represents the
base station positioned in the center of the field, 50 static
nodes were distributed in a grid fashion, representing the
infrastructure. Moreover, there are 149 mobile nodes being that
100 present human-like mobility pattern and 49 present non-
human patterns. Following, the mobility patterns are described.

A. Entities Mobility Modelling

To the best of our knowledge, there is a lack of real
and diverse mobility traces for IoT’s entities, usually due to
privacy-related or technical issues. To overcome such situa-
tion, researchers have developed mobility models to fill this
gap [19], [20]. Those models do mimics of real mobile entities
behavior allowing us to generate variable traces in terms of
space, time, and size.

We employ mobility models in our simulated environment
classifying them into two groups: human and non-human
patterns. For human mobility model, we highlight the Small
World In Motion (SWIM) [21] and the Group Regularity
Mobility model (GRM) [22]. SWIM produces synthetic traces
with similar properties of real mobility traces. It assumes that

TABLE II
MOBILITY MODELS PARAMETERS

GRM-MIT CRWP

Group Duration 720 h Node Speed (max) 5 m/s
Path time 300 s Tpause (const.) 600 s

Statistical parameters # Stops Unif(0, 10)

αgmt 2 PerMobNodes 50 %
βgmt 720
αdur 2
βdur 720
αsize 2.24
βsize 30

humans go to places near their home, where they meet others,
and, eventually, they return to their homes. GRM presents
similar properties, but it introduces the dynamics of group
meetings and social community structure.

Over the years several non-human mobility models were
proposed [16], [20], [23]. We highlight the Random Waypoint
Mobility Model (RWP), a well-known mobility model to
evaluate MANET routing protocols [23]. In RWP, the entities
move freely in a random direction, velocity, and acceleration.
Also, there is an RWP extension named Cyclical Random
Waypoint Mobility Model (CRWP) [3], where the entities
behave similarly as in RWP. However, for CRWP entities,
after n chosen destinations, the mobile entity returns to its
initial position. CRWP is useful to model scenarios where
some entities move to different destinations, and eventually,
they return to their initial positions, which is the case of objects
(e.g., portable devices, environment cleaners, etc.) that move
in homes, offices, universities, hospitals, factories, etc.

We use GRM and CRWP as human and non-human mobility
patterns, respectively. Table II lists the model’s parameters. For
GRM, we set the parameters to reproduce MIT real trace [22]
behavior. The statistical parameters are from truncated power
laws with cut-off where α∗ is the power law exponent and β∗
the cut-off value: αgmt and βgmt define the group meeting
times distribution parameters; αdur and βdur characterize the
time that a group of entities will spend together. Finally,
αsize and βsize define which entities will be at each group
meeting. For more parameter’s details see [22]. CRWP has
four parameters [3]: i) Speed: speed which the mobile entity
moves; ii) Tpause: the amount of time that the entity stays
in a destination position; iii) Stops: number of stops that
the mobile entity do before returning to its original position;
iv) PerMobNodes: maximum percentage of entities that are
out from its initial position in each instant of time.

B. Measuring Mobility

In our simulation environment, there are static and mobile
entities classes. We used mobility metrics as discussed in
Sec IV-B to capture the mobility patterns. MOCHA [15]
and BonnMotion [16] are freely available tools utilized to
extract the mobility metrics from the traces. Fig. 3 shows
three mobility metrics analyzed for one of our simulated
topologies. Static nodes present no speed and Travel Distance



Fig. 3. Mobility metrics for each entity.

(TD), however, the Visit Time (VT) is high. While human-
like nodes present high variability in TD with moderate VT.
The non-human nodes present high-speed variability and high
values of TD. Visually, it is possible to see three groups in
our dataset, and this insight drove us to the learning-based
classification method.

C. The Neural Network

We employ a Multi-Layer Perceptron to leaning the mobil-
ity context classes (static, human-like, and non-human). The
MLP architecture (see Table III) was kept simple aiming to
be suitable for constrained devices. The model was trained
with mobility metrics measured from 10 random topologies
composed by 200 nodes each. As model validation, we used
10-fold cross-validation over the data. Moreover, Fig. 4 shows
the confusion matrix and Table III lists values of precision,
recall, F1-score, and support. The results show high precision
and recall, this is due to the target classes present disparate
mobility metrics characteristics. Therefore, the model fits and
predict correctly the entities classes.

D. Assigning Timer Schemes to Mobility Patterns

In our experiments, we assign the timer schemes to mobility
pattern as follows: i) Non-human mobile entities were assigned
to the Periodic scheme since they present the highest speed
variability and travel distance. Therefore, a Periodic scheme
with suitable short interval can better capture the mobility be-
havior. ii) Human-like mobile entities were assigned to RevTT.
Those entities presented moderate VT and wide variability in
TD. This suggests that entities usually arrived at the desti-
nation, stop for a while and then move again. This matches
with RevTT proposal (recall Sec III). iii) Static entities were
assigned to TT scheme since they represent infrastructure
without any mobility, thus TT offers low control overhead
when nodes experience network stability which usually occurs
for infrastructure devices.

E. Simulation Results

To compare Dribble against single timer schemes, we use
five remaining random network topologies. In each following
plot, the bars or points represent the average, and the error
bars indicate the confidence interval of 95 %.

TABLE III
MODEL PARAMETERS AND CLASSIFICATION REPORT

Neural Network Architecture and parameters
Architecture 1 Hidden layer with 100 neurons
Activation Rectified linear unit function
Learning rate Constant
# epochs 500
Weight optimization Adam

Train dataset Mobility metrics from
10 random topologies

Validation model 10-fold cross-validation
Precision Recall F1-score Support

Non-Human 1 0.99 0.99 165
Human 0.98 1 0.99 317
Static 1 0.96 0.98 171

avg / total 0.99 0.99 0.99 653
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Fig. 4. Confusion matrix.
Firstly, we analyze the trade-off between control advertise-

ment overhead and the average disconnection time along the
15 days of simulation in Fig. 5. In the graphic, it is desirable
low control overhead and short disconnection timer. A low
number of control packets implies in less energy expenditure
and low channel occupancy. The disconnection time is the
time spent from the moment that a node moves out from the
parent radio range until it finds out a new parent. As expected,
Periodic is the fastest timer scheme to find topology problems
but it fires more control packets. On the other extreme, RevTT
is more economical in terms of control overhead but topology
problems persist for a long time. TT shows moderate trade-
off balance. Dribble shows the better trade-off balance by
quickly reacting to topology changes and triggering fewer
control packets. Which can be explained by the customized
timer scheme assignment to each node.

Owing to the wireless channel being a shared medium.
When a node sends a message many neighbors nodes may
overhear the transmission, even if the message is not intended
to them resulting in unnecessary energy waste. Fig. 6(a) shows
the overhearing transmissions (for all control flow DIOs,
DAOs, and Acks) for each timer scheme. RevTT presented the
lowest overhearing average, followed closely by Dribble and
TT, while Periodic presented the highest overhearing average.

The average time of a set of nodes in a floating state2 is

2A grounded DODAG offers connectivity (route towards the border router)
to hosts, while a floating DODAG does not. It only provides routes to nodes
within the floating DODAG [4].
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Fig. 6. The control flow overhearing and the average time in a floating state.

shown in Fig.6(b). Dibble has a lower time in a floating state
than TT and RevTT due to the mix of timer schemes running
concurrently. Therefore, it is more likely to a node receive a
control packet and fix the topology inconsistencies. Periodic
presented the lowest time in the floating state, however, it uses
more control advertisement as shown in Fig. 5.

VI. CONCLUSION

In this work, we proposed Dribble, a learn-based timer
scheme selector, to improve the way timer schemes are used
in IoT. Until now, routing protocols have used a single timer
selector chosen without considering the entities’ mobility
behavior. Dribble goes further by setting a custom-made timer
scheme to proper devices given their mobility pattern. We
evaluate Dribble against Trickle Timer and Reverse Trickle
Timer. Dribble presented a better trade-off balance between
quick response to topology problems and energy expenditure
and channel occupancy.

As future work, we aim to extensively improve Dribble
to support fine-grained mobility contexts, better recursive re-

evaluation of nodes mobility behavior and beaconing scheme
matching. Also, provide an automatic way to associate mobil-
ity patterns to timer scheme, avoiding the specialist mediation.
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