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Abstract— In this work, we propose the Road Data Enrichment
(RoDE), a framework that fuses data from heterogeneous data
sources to enhance Intelligent Transportation System (ITS)
services, such as vehicle routing and traffic event detection.
We describe RoDE through two services: (i) Route service,
and (ii) Event service. For the first service, we present the
Twitter MAPS (T-MAPS), a low-cost spatiotemporal model to
improve the description of traffic conditions through Location-
Based Social Media (LBSM) data. As a case study, we explain how
T-MAPS is able to enhance routing and trajectory descriptions by
using tweets. Our experiments compare T-MAPS’ routes against
Google Maps’ routes, showing up to 62% of route similarity, even
though T-MAPS uses fewer and coarse-grained data. We then
propose three applications, Route Sentiment (RS), Route Infor-
mation (RI), and Area Tags (AT), to enrich T-MAPS’ suggested
routes. For the second service, we present the Twitter Incident
(T-Incident), a low-cost learning-based road incident detection
and enrichment approach built using heterogeneous data fusion.
Our approach uses a learning-based model to identify patterns
on social media data which is then used to describe a class of
events, aiming to detect different types of events. Our model to
detect events achieved scores above 90%, thus allowing incident
detection and description as a RoDE application. As a result,
the enriched event description allows ITS to better understand
the LBSM user’s viewpoint about traffic events (e.g., jams) and
points of interest (e.g., restaurants, theaters, stadiums).

Index Terms— ITS, heterogeneous data fusion,
data enrichment, LBSM, incident detection, VANETs.

I. INTRODUCTION

NOWADAYS, the intelligent planning and management
of transportation systems are fundamental tasks to pro-

mote the sustainable growth of modern cities. Governments,
researchers, and industries have been developing and deploy-
ing systems to record and understand mobility patterns within
a city to support solutions to reduce traffic issues and incident
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events [1]. In this context, the ITS emerges as a feasible
way to improve real-time decision-making by leveraging the
availability of information and communication technologies,
thus providing applications and services to improve trans-
portation systems. ITS depends on the availability of users’
data (from different sources and covering the whole city) and
communication technologies to support both data sharing and
access to services. However, the lack of a timely access to
relevant data may present a limitation to the real-time traffic
analysis performed by those systems, since only a set of
companies have access to such data (e.g., data from inductive
loops, traffic cameras, semaphores, GPS track, and origin-
destination matrix) or it is often outdated. This happens due to
the commercial value that transportation-related data have for
companies, and also to the deprecated infrastructure employed
to deliver such data to end users. These facts become a barrier
to better understand urban mobility and the transportation
scenario, thus requiring alternative solutions like the one being
proposed in this investigation.

Currently, information about road traffic and road events
available to the users are outdated or have a low quality
descriptions, which limit the efficiency of services that can
be provided, such as route management and flow control.
As a result, the spread of detailed and useful descriptions of
critical events is also compromised. Overcoming these issues
demands multidisciplinary expertise to leverage transportation
system data to improve traffic efficiency and safety. Recent
investigations use location-based data from different sources
(e.g., LBSM, maps service and ad hoc transportation systems).
Therefore, integrating multiple data sources is a fundamental
process to provide consistent, accurate and useful information.
Such a process is called Data Fusion, which is particularly
challenging when dealing with heterogeneous and asynchro-
nous data that may include noise and errors. Furthermore,
spatiotemporal aspects increase the complexity of fusing these
heterogeneous data sources [2].

Nevertheless, traffic data from most of our cities is still
gathered and shared by few private/public institutions in a
centralized fashion, i.e. with restricted data access for third
parties and also with limited description of pertinent events.
Consequently, LBSM (e.g., Twitter, Instagram and Foursquare)
combined with navigation systems (e.g., Google Maps, Here
WeGo and Bing Maps) has become an alternative data source
to study urban mobility. Social media platforms allow users
to share their thoughts, viewpoints and activities related to
their feelings about almost everything including the perceived
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Fig. 1. The design of RoDE.

traffic conditions (different modern life issues subject of recent
research can take advantage of LBSM as a low-cost data
source [1], [3]–[5]).

With this in mind, this investigation compiles the current
traffic status in a given city using LBSM and navigation
platforms. In order to compile the status, we introduce a robust
framework named RoDE, which is based on heterogeneous
data fusion. Our framework, depicted in Fig. 1, aims at
delivering enriched event descriptions as input to navigation
systems, road planners and the general public. Our description
of routes and events replace the usual binary feedback from
transportation systems, such as whether the current traffic is
good or not, or whether there is or isn’t an incident. For
example, after a set of data source passes through our data
fusion models, the outcome is used as an input to specialized
services dealing with routing enrichment, and event detection
and description.

In particular, RoDE takes as input two different classes
of transportation system data sources, which are categorized
as Infrastructure as Vehicular Sensor (InfraVS), and Media
as Vehicular Sensor (MVS), as described in our previous
work [6]. The former class, InfraVS, acquires data from
navigation systems, such as routes from Google Maps, traffic
jams and incidents from Here WeGo, and from Bing Maps.
The latter class, MVS, acquires data from pertinent LBSM,
such as the user’s viewpoint from Twitter and Points of Interest
from TripAdvisor. It is important to notice that the use of
LBSM can also introduce user’ bias to the system. However,
RoDE implements a methodology to pre-process LBSM by
taking into consideration, in most of cases, reliable sources,
such as Twitter accounts managed by the Department of
Transportation, Traffic Department, Police Department, road
managers, news and so on. After providing RoDE with these
two types of data, the system uses appropriate data fusion
models to treat and fuse them, based on two specific goals,
which are: (i) enrich the description of routes generated
by Google Maps; and (ii) detect road events (incident and
non-incident) and enrich the description of those events.

The contributions of the RoDE framework are summarized
into two fundamental services using enriched data from
heterogeneous data sources as follows:
• Route Services (Twitter MAPS (T-MAPS)): is a low-cost

spatiotemporal model to improve the description of traffic
conditions based on tweets. Our quantitative experiments
compare T-MAPS routes with Google maps routes and
show a high route similarity, even though T-MAPS
uses few and coarse-grained data. As a result, the sim-
ilarity is used to enrich the route description within
three new services over T-MAPS: Route Sentiment (RS),

Route Information (RI), and Area Tags (AT) aiming at
enhancing the route information;

• Event Services (Twitter Incident (T-Incident)): is a
low-cost learning-based road incident detection model
which also enriches the incident description using het-
erogeneous data fusion techniques implemented as RoDE
services.

This paper is organized as follows. Section II presents the
related work. Section III describes the data acquisition process
to propose RoDE services. Section IV motivates the use of
LBSM data to enhance and complement the conventional ways
to see traffic and transit in urban areas. Section V describes
LBSM data aspects such as data imprecision, user bias and
so on. Section VI provides details about the Route Service.
Thereafter, Section VII describes the Event Service archi-
tecture and its quantitative evaluation through experiments.
Finally, Section VIII concludes the paper and also lists future
work.

II. RELATED WORK

The growth of the Internet and the proliferation of LBSM
have enabled scientific investigations supported by an enor-
mous amount of data generated every single day in urban
areas. When considering the traffic and transit perspective, sev-
eral studies have analyzed traffic conditions using LBSMs [7].
Many other studies focus on event detection and diagnostics
using Natural Language Processing (NLP) techniques [4], [8],
[9]. Rettore et al. [6] survey the recent literature using such
data on ITS context. Moreover, they outline a taxonomy,
according to the different data sources, highlighting the MVS.

Other studies perform sentiment analysis using LBSM
data [10], [11]. Kim et al. [5] proposed SocRoutes, a safe
route recommending system, based on Twitter data. Unusual
traffic events, based on social media, was investigated in [12].
Septiana et al. [13] categorized road conditions with an accu-
racy of up to 92%. Gu et al. [14] explored tweets text to extract
traffic incident information and to provide a low-cost solution
to existing data sources. They validated the Twitter-based
incidents using data from RCRS (Road Condition Report
System) incident, 911 Call For Service (CFS) incident, and
Here WeGo travel time.

Yazici et al. [15] showed that tweets collected from regular
accounts are more likely to be irrelevant, though they can
capture events that have just happened. On the other hand,
tweets from specialist accounts are more valuable and struc-
tured, therefore, better identifying incident events. Also, they
showed that the combination of both sources, leads to better
results when dealing with event detection. In the same way,
Zhang et al. [16] complemented the incident detection scenario
by using social media data. They showed that social media
data can be useful as an alternative way to improve traditional
methods to detect traffic events in real-time.

Nguyen et al. [17] developed the TrafficWatch, a real-time
Twitter-based system designed to leverage traffic-related infor-
mation to allow incident analysis and incident visualization in
Australia. They also developed a case study to detect road
incidents before the Transport Management Centre (TMC)
Log Time and also detecting incidents not reported by TMC.
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Pereira et al. [18] used a reliable media provided by traffic
management centers, NLP techniques, featuring topic model-
ing and text analysis to improve the accuracy measuring the
duration time of an incident. They showed that the use of this
data source improves the prediction of an incident by 28%
when compared to a base line experiment not using the reliable
media.

The present investigation extends our previous study in [19]
suggesting that LBSM posts can improve the comprehension
of road traffic events. Differently from most of the related
work discussed above, we take a step forward by providing
a model to clarify the ongoing traffic condition, based on
heterogeneous data fusion, by adding extra information to
current navigation systems. Complementing most of the recent
literature discussed above, we start with the hypothesis that
a model to fuse data from heterogeneous data sources can
add extra information to current navigation system improving
the feedback to the users. In particular, RoDE provides route
description services, such as Route Sentiment (RS), Route
Information (RI), and Area Tags (AT). Moreover, RoDE also
provides event detection and description services. We also
detail the spatiotemporal grouping algorithm, the feature
extraction process, as well as the ground truth for the route
service (Google maps routes), and the event service (Here
and Bing incidents) to conduct our learning-based model with
LBSM data.

III. DATA ACQUISITION

Nowadays, most of our cities are still missing a digital plat-
form to collect and share mobility data with their inhabitants
and third parties. Thus, the lack of available data in urban
transport environments is one of the greatest challenges for
those developing (ITS). Researchers are often restricted to
theoretical studies or to limited public data in both coverage
and quality. Luckily, the current increase of online platforms,
such as LBSM, makes it possible for people to share their daily
urban mobility and opinions regarding a variety of aspects.

In this sense, we conducted the data acquisition process
to support our ideas in developing and evaluating the RoDE
services. We executed a daily data acquisition process of
LBSM to support the development and evaluation of two
RoDE services: T-MAPS and T-Incident. Based on previous
experiences, we have chosen New York City (NYC) as our use
case because of the large amount of data generated in that area,
which increases the chances to have more spatiotemporal data
coverage. As a result, Tab. I summarizes the data collected dur-
ing this investigation for both RoDE services, the first dataset
addressed to the Route, and the second dataset addressed to
the Event service.

The motivation behind these RoDE services come from the
desire to expand the knowledge about the traffic conditions
by providing a more detailed description about a given sce-
nario, instead of the usual binary feedback from transportation
system which categorizes if the current traffic is good or
bad. Using social media data, it is possible to describe the
traffic scenarios such as the indication of the route’s condi-
tion, the intensity of accidents and more detailed information
about road events. This type of information may enrich the

TABLE I

DATA ACQUIRED WITH RODE FRAMEWORK

Fig. 2. Dataset coverage in new york city and neighborhood.

user’s transportation experience, providing better assistance for
decision-makers when dealing with urban mobility.

A. Route Service

Our first dataset to evaluate the T-MAPS consists
of 353,807 tweets from 21 manually selected users’ accounts.
Those accounts are maintained by transport departments, traf-
fic specialists and transit reports such as news channels or
dedicated companies. The main reason to carefully select these
accounts is to introduce reliable data to our experiments. While
there is no restriction on subject in regular users’ accounts,
the specialist accounts have a specific subject and usually
a high-quality description. Indeed, the specialists’ accounts
gather data from different sources (for example, radio, tele-
vision, transport and police departments, podcasts, automotive
data1). The number of tweets with geotagging is 307,020,
most of them in NYC. Here, we explored the Manhattan
region, which has 38,112 tweets. The dataset was collected
during the last three months of 2016. Tab. I summarizes the
data collected to achieve the Route Service goals. The dataset
does not contain regular users due to the high user bias in
their tweets regarding traffic feelings. Moreover, some aspects
involving the use of LBSM data are highlighted later in Sec. V.

To visualize our first dataset, Fig. 2(a) shows the spatial
coverage of tweets in our dataset. Most tweets are about the
road network, i.e., if we zoom in, it is possible to see the I-95
highway with tweets along its extension. From the temporal
viewpoint, Fig. 2(b) shows the tweets’ density along the hours
for @NYC_DOT, @TotalTrafficNYC, and @511NYC users’
accounts. Note that some peaks of tweets appear during rush
times confirming the reliability of these accounts reporting
traffic jams or other traffic-related events likely to occur during
rush hours. Confirmation of the reliability of these accounts is
required because large cities like NYC are known to suffer
from traffic jams and accidents during rush hours (further
details about the data acquisition process is provided in [19]).

1https://www.ttwnetwork.com
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An important question emerges from the inherent subjectiv-
ity of enriching the description of traffic events. To the best
of our expertise, there is no ground truth for the best route
within urban areas. For that reason, many tools offer their
own traffic viewpoint, such as Google Maps, Here Wego, Bing
Maps, and TomTom maps. Our motivation to develop T-MAPS
was to demonstrate the potential usage of LBSM data as a
complement to traffic data. Also, our goal is to encourage
the design of new applications, models, and analysis of urban
mobility using LBSM.

B. Event Service

T-Incident is a service to accurately identify traffic events
(incident and non-incident) and enrich their descriptions. The
data acquisition process aims at combining different data
sources, such as Here WeGo, Bing Maps2, Tripadvisor3 and
Twitter4 in both temporal and spatial dimensions to achieve
these goals.

The second dataset used in this investigation consists
of 158,413 tweets acquired from 2018-09-14 to 2018-11-06.
During this period, we extracted data from Twitter filtering
tweets by a set of words related to incident events, such
as congestion, accident, construction, planned event, road
hazard, disabled vehicle, traffic, jam, car and weather (most
of them are used by navigation tools to describes types of
incident). All collected tweets are geolocated and most of
them are in Manhattan, NYC. Moreover, we were interested
in tweets from both regular (common accounts) and special-
ist (professional accounts controlled by corporations) users.
We also discarded tweets posted as retweet, aiming to collect
the user’s impressions and ignoring the spread of information.

LBSM data poses several challenges, as discussed later
in Sec. V. To collect as much incident events as possible,
we acquired data from two different data sources: Here WeGo
and Bing Maps. The incidents gathered from both platforms
have temporal granularity of one hour from 2018-09-14 to
2018-11-06; therefore overlapping temporally and spatially.
We have collected 9,784 distinct incidents acquired from Here
WeGo and 1,924 distinct incidents acquired from Bing Maps.
To use those incident data, we fused both data sources, filling
the gaps in a data source with entries from each other, and
vice-versa. We also combined common incidents to these two
data sources because the descriptions are, usually, different
and can complement each other (see Sec. VII-A for details of
this process).

The first step to detect incidents is to define what is not
an incident. In order to do it, we picked a set of places with
no traffic incidents from a data source dealing with touristic
places, called Tripadvisor. Tripadvisor is a travel website
that compiles reviews of hotels and restaurants, together with
other multimedia travel-related content. Next, we extracted
data from Tripadvisor to compile a set of the most popular
places ranked by the tourists, such as museums, observatories,
parks, pubs, and theaters. Tab. I summarizes the data collected
to achieve the Event Service goals and Fig. 3 shows the

2https://bing.com/maps
3https://tripadvisor.com/
4https://developer.twitter.com/en/docs

Fig. 3. The data sources spatial coverage.

spatial data coverage of each data source used to develop the
T-Incident service.

IV. TWITTER AS A TRAFFIC SENSOR

To reveal the potential of LBSM data to enhance and
complement the conventional ways of seeing traffic and transit,
it is fundamental to understand how tweets are related to
the traditional traffic sensor. The relation between tweets and
conventional traffic sensors highlights the potential of the
former to enhance the latter. For example, if a conventional
traffic sensor detects an anomalous event, can tweets explain
such a typical event? This section presents direction to answer
questions like this.

First, it is required to get access to classic traffic
measurement data, such as inductive loop detector counts,
traffic cameras, vehicle GPS traces on road network, or origin-
destination matrices, among others. With these data sources,
traffic specialists can study demand and supply aspects of the
transportation systems. Demand can be seen as vehicles and
pedestrians trying to reach a particular place while supply is
related to streets, highways, sensors and control devices [1].
Thus, it is possible to study the interactions between demand
and supply, and eventually develop efficient transportation
systems, which optimize urban mobility and decrease transit
congestion.

Unfortunately, the access to raw traditional sensor data is a
challenge for the regular community. Raw traffic data are kept
locked by government entities or large companies. Usually,
the traditional sensors sense three variables of interest: veloc-
ity, density, and flow. These quantities are relate to each other
allowing traffic behavior analyses and visualizations [1], [20].
On the other hand, LBSMs is accessible on the Internet and is
an alternative to support recent urban mobility studies like the
ones reported in [1], [3]. Also, it is common that users share
their thoughts, viewpoints, and activities on LBSM platforms.
Such personal posts expand the sensing capacity by capturing
the users’ perspective about the situation.

Naturally, raw data holders perform some data fusion
process and present the result in their online services or in
periodical statistics. For example, Google gathers heteroge-
neous data such as GPS traces, cameras, and inductive loops.
Thus, Google Maps implements a process to fuse data sources
adding a colored layer to highlight traffic conditions on a map.
In that way, companies like Google, HERE WeGo, Bing, and
TomTom allow access to the resulting data fusion process,
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Fig. 4. Tweets frequency and here Jam factor time series.

Fig. 5. Cross-correlation between Jam Factor and #tweets time series.

or part of it. Here, we reuse the Jam Factor (JF) from HERE
WeGo API as a traditional traffic sensor aggregated to our
framework. According to the HERE documentation, the JF
is a fused representation of traditional heterogeneous data
varying from 0 (free) to 10 (street blocked). We choose the
jam factor from HERE WeGo because it is, currently, the only
API providing such metric.

Fig. 4 shows the correlation between HERE JF and
correlated traffic tweets in the dataset along a week in
Oct. 2016. The time series in blue is the aggregated HERE
JF, and the orange curve corresponds to the number of tweets.
We re-scale the tweet and JF time series to lie between 0 and 1,
and aggregated each series hourly. This explains why the
two curves look similar in the plot. We also compute the
Spearman’s rank (ρ), a nonparametric correlation coefficient,
to identify relationship between two variables. The ρ has a
value between −1 and +1, where −1 means that the obser-
vations are entirely dissimilar and +1 the opposite. We apply
Spearman’s rank in the time series resulting in ρ = +0.81.
It is possible to interpret that the #tweets tend to increase
when the JF increases. Notice that, our methodology (data
acquisition and data preparation) guarantees that we are using
traffic data, avoiding correlation between JF and any other
non-related subject.

Applying the cross-correlation technique, it is possible to
figure out where time series match [21]. Fig. 5 shows on the
y-axis the cross-correlation between JF and #tweets, and on
the x-axis the lag between the time series in hours, we use
JF as the test waveform. The highest correlation (0.8) appears
when the lag is +1 meaning that #tweets curve is 1 hour
ahead of JF. One can interpret these results as an indication
that tweets appear on the platform before JF increases, but
note that the time series were hourly aggregated. Then, we are
not able to claim that tweets can predict traffic jam, but these
both correlations give us enough information to consider our
dataset as reliable source to support the RoDE proposal. In the
analyses presented in Fig. 4 and Fig. 5 we used the total
sample of the acquired tweets to evaluate the Route Service
(see Tab. I). Fig. 4 and Fig. 6 complement each other, where
the former shows a macro viewpoint in days of the correlation
between tweet and JF and the latter does the same hourly

Fig. 6. The frequency of tweets per hour.

providing a micro viewpoint of events. It is possible to see the
same shape in both graphics, highlighting the hourly frequency
of tweets.

After we verified the potential of using Twitter as a traffic
sensor, we characterized the problems in the next section.
Because we have to deal with these problems before proposing
solutions using Twitter as a data source for ITS like RoDE.

V. LBSM DATA ASPECTS

Social media is a fundamental data source that can be
used as an input for RoDE because it complements the
set of heterogeneous sources (e.g., traffic and navigation
data) potentially enriching the transportation scenario with
descriptive data compiled by the end user. In this section,
we discuss what we have learned from the LBSM data aspect
while designing/implementing RoDE. For example, data from
Twitter poses many challenges when related to traffic events.
Here, we classify the data aspects into four classes, namely:
Data imprecision, User bias, Spatiotemporal assignment, and
Inconsistencies. More extensive taxonomies can be found
in [2], [22].

LBSM data comes with a certain degree of imprecision
mainly because people can express their opinions freely. Often,
the data imprecision presents at least one of the following
characteristics: incomplete data, vagueness and granularity
effects. For instance, let us consider the following tweet:

“Now 8:00 AM an accident at 100 W 33rd St #NYC
#BadTraffic #creepedOut”.

One can obtain relevant knowledge about the event, e.g.,
the user’s sentiment, traffic condition, date and time. However,
the tweet lacks fundamental information, such as geotag and
event severity, therefore it can be classified as incomplete.
There are some techniques to mitigate data incompleteness in
LBSM. For instance, Pinto et al. [23] proposed a record link-
age approach to enrich incomplete data. Dubois and Prade [24]
and Yagger [25] used possibility theory and the probability of
fuzzy events to handle imperfect data.

The Vagueness corresponds to an unclear description with-
out the context information related to an event. The above
tweet shows vagueness due to the inability to precisely define
the extension, position, cause or even those involved in the
accident. Usually, a way to deal with vagueness is matching
and fusing data from different sources to make the context
surrounding an understandable event by systems and users.

The Granularity ranges from fine-grained to coarse-
grained data related to an event. Fine-grained data contains
enough information to accurately describe the event location,
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the affected direction(s), the severity of the accident, and so
on. On the other hand, coarse-grained data provides a macro
view of events with a broad description.

A. User Bias

The user bias comes from the diversity of user’s experience
and background while interpreting and reporting the current
traffic conditions. For instance, suppose that Alice and Bob
are both tweeting about the same traffic jam. However, Alice
has been facing such traffic conditions for many years, but
Bob just moved to the city few months ago. There is a high
probability of Alice tweeting the traffic jam as a normal daily
event whereas Bob may interpret the regular traffic situation
as a chaotic one. Consequently, the user’s perception may lead
to bias introduction on data traffic from LBSMs

One way of reducing user bias is to use specialist’s accounts
(professional accounts) which are also reporting traffic infor-
mation in a given area. The specialist may also introduce
his own bias sharing information for a specific audience or
place. However, data from regular users demands more pre-
processing treatment before fed as input to RoDE. In the
present investigation, we selected the specialists’ accounts
manually to reduce users’ bias within the RoDE Route Ser-
vices. We also checked that the data from these accounts are
reliable, as detailed later in Sec. III-A. Then, the RoDE Event
Services balance the reliability to obtain incident description
from specialists also gathering the description of non-incident
events (say cultural events and so on) from regular users.

B. Spatiotemporal Assignment

Tagging data, from heterogeneous sources, to space and
time is a fundamental task for RoDE. Because geographical
location and temporal tagging allow intelligent transportation
systems to study and characterize a region at any instant or
time interval. In this section, we discuss the challenges to
extract spatiotemporal information from LBSM.

The Spatial aspect assigns geographical location (latitude,
longitude and altitude) to the data, therefore, allowing RoDE
to compile the context surrounding the data. Twitter users are
able to geo-reference their tweets in three primary methods:
(i) geographical references in a tweet message; (ii) tweets
geo-tagged by the user or client application; and (iii) account
profile (’home’ location) set by a user. However, deriving
this information, even when present, is not always a trivial
task. For example, a tweet may contain the spatial location
in written form instead of a geo-tag, requiring an algorithm
to identify and extract a textual address, and also convert
to latitude and longitude. Although such algorithms already
exist, the inherent unstructured form and freedom of writing
(e.g., abbreviations within a limit of only 280 characters)
on LBSMs turn the spatial textual extraction a challenge.
Moreover, such challenges often result in ambiguous infor-
mation subject to misinterpretation. There are research efforts
investigating these challenges as follows. Liu et al. [26] and
Finkel et al. [27] used Natural Language Processing (NLP)
techniques to obtain parts of speech and entity recognition
to label sequences of words that are the proper nouns.
Li et al. [28] optimized NLP techniques to tweets text.

Information availability is another challenge for spatial data
assignment. Some regions will have more coverage than others
because of factors such as the density of inhabitants per square
meter and number of tourists. For instance, large cities tend to
have higher spatial coverage of LBSMs than smaller towns
because of differences in the number of users, penetration
of smart phones, young population, tourism, companies and
traffic related information, or other complex social aspects out
of scope of this investigation.

The Temporal aspect is the key to understand the past,
present, and, possibly, the future scenario of the transportation
system. LBSM platforms usually assign a timestamp when
users input data to the system. However, this markup may
not represent the same moment as when the event occurred.
Thus, some open questions about temporal assignment are the
following: What is the validity of data published by a user of
LBSM? How can we characterize the delay between the event
and the data input on LBSM platforms?

C. Inconsistencies

This subsection discusses data inconsistency challenges we
faced while using data from LBSM platforms. We focus
on the inconsistencies related to conflicts and out of order
aspects because previous literature already addressed other
inconsistencies e.g., [2], [22].

The Conflict on LBSMs appears when two or more data
sources diverge about a specific event. For instance, suppose
that Alice and Bob share their feelings about the same
traffic event. Alice reports that nothing serious happened
and the traffic flows well, while Bob reports that a severe
accident happened which promotes a negative impact on
the traffic. Based only on these two points of view, it is
difficult to determine what happened. In the literature, the
Dempster-Shafer evidence theory has gained notoriety in
reducing data source divergences [29], [30]. Also, it is possible
to give a reputation weighting to users’ accounts, and then
apply rules to decide on the most credible information. In this
work, we acquired data from regular and specialist accounts
in order to reduce the chances of conflict aspects. Moreover,
the analysis of frequent terms tend to reduce conflict when
most of the users agree with the description of traffic state,
varying just in its intensity but not in reporting a completely
different situation. For instance, users can report traffic at
different levels, but they usually do not report that there is
no traffic.

The Out of order occurs because of the freedom offered
by LBSM platforms which allow users to enter traffic and
transit information out of sequence into the system. These
data appear as inconsistent to systems like RoDE because they
are posted hours/days after the event (temporal dimension).
Therefore, we have to consider how to use such data properly.
Usually, the trivial solution is to discard the out of sequence
data. However, if the data was identified correctly and then
sorted, it may be used as a feedback data at the cost of more
processing and storage resources.

VI. RODE: ROUTE SERVICE

In order to provide a useful route service, we started with
the hypothesis that it is possible to provide a route service
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Fig. 7. T-MAPS modeling process.

using data from LBSM. In order to verify this hypothesis,
we studied the relation between real traffic jams and the
tweets about these jams. In the next sections we describe
how we collected and characterized LBSM data to develop
Twitter MAPS (T-MAPS). Twitter MAPS (T-MAPS) enhances
the navigation context by adding the users’ viewpoint in a
new layer compiled from LBSM data in different ways. For
example, by evaluating tweet’s frequency or users’ perspective
on a region of interest.

A. Modeling Process of Twitter MAPS (T-MAPS)

The T-MAPS is a low-cost spatiotemporal model to enrich
traffic events (jams and accidents) using tweets from the
same area posted online at around the same time the traffic
events occur. This model allows the representation of the
traffic scenario highlighting different aspects by considering
instantaneous or historical data, and also using text mining
techniques over relevant tweets. Below, we present the three
steps of our modeling process as discussed in [19], see Fig. 7.

1) Data Acquisition: this step consists of segmenting the
area of interest and retrieving geotagged data from LBSM
platforms. We use the geographic shape of a given area and
its neighborhood segmentation to develop the T-MAPS model.

2) Filtering and Data Fusion Process: this step aims to
filter and bind LBSM data to the segmented region. We use a
weighted time-varying digraph as a model to map these areas
and data. The time-varying digraph is represented as a series
of static networks, one for each time step. Formally, let R be
the set of segments of the region, then a snapshot digraph is
defined as Dt = (V , E, m), where V = {r |r ∈ R} denotes the
segmented region, and E = {(u, v) ∈ V |u is adjacent to v in R
segmentation} denotes the directed edges between physically
connected regions, and m is the weights (discussed below).
The T-MAPS time-varying digraph is a sequence of snapshot
digraphs, thus T-MAPS(D) = {Dt=tmin, Dt+�, . . . , Dtmax},
where tmin and tmax are the start and end time of the available
dataset, and � can be adjusted conveniently. Notice that our
digraph connect each region with a bidirectional edge.

3) Metrics: it consists of assigning cost weights to the
directed edges. Formally, m(u, w) : E → value, where
m(u, w) is a function mapping the directed edges to a cost
metric. The metric function represents a particular traffic
scenario analyzed using the LBSM data posted within the
same geographical region. Fig. 7 illustrates an example of
the T-MAPS modeling process. First, we segmented the NYC
map into five regions of interest, then we collected LBSM

available data posted from these regions. Next, we obtained
the digraph G = (V , E, m), where V is the set of regions,
and E the directed edges between adjacent regions. Then,
we bound Twitter’s traffic data to the resulting regions graph.
Finally, the weights were assigned to the edges using different
metric functions. The resulting time-varying digraph allows
us to analyze the traffic scenario taking into account both
conditions and descriptions of events. The main metrics are
the following:
• Instant: this metric considers all tweets at a given instant

of time t . This strategy corresponds to a snapshot of
the traffic scenario. Usually, instantaneous data are sparse
with limited coverage of the region of interest. However,
these data may highlight an event at a given time.

• Accumulated: this metric considers all data acquired
within a given time frame. It requires two parameters,
tstart and treference, where tstart < treference and must respect
the temporal dataset availability, which stores all data
between tstart and treference. One can interpret this metric as
a historical metric looking into the past until the reference
time point. In our experiments tstart = tmin.

• Average: it uses a similar same approach if compared
to the Accumulated metric described above. However,
the values assigned to the edges are the average of
tweets’ occurrences over time, compiled daily, monthly
and yearly. This information is the mandatory input to the
metric function. One can interpret it as a typical traffic
condition metric computed within a given time frame.

In short, the T-MAPS modeling process acquires social
media posts that are represented as a graph matching both
space and time of a given area. Our model also includes three
metrics used to evaluate different routes using feedback from
the users (tweets).

B. A Case Study

We conducted a case study to demonstrate the potential of
T-MAPS. We compared T-MAPS recommendations against
Google Direction5 routes (GD) computing the similarity
between the output of both systems. Later, we present three
route description services demonstrating the potential of
T-MAPS to enhance and describe the routes suggested as
well as to give an overview of the traffic scenario. The
Manhattan region was segmented into 29 official neighbor-
hoods6. Consequently, the T-MAPS digraph snapshot contains
29 vertices. Besides, the minimum time interval between two
consecutive T-MAPS graphs corresponds to a � = 1 hour.
Although T-MAPS was designed to accommodate both data
resolutions (micro and macro), the case study used a macro
viewpoint due to data coverage limitation.

1) T-MAPS Applicability: We evaluated the T-MAPS
applicability by comparing its similarity, in recommended
routes, with GD. Note that the T-MAPS route suggestion
considers a macro resolution of the regions on the map, but our
model is flexible enough to encompass fine-grained resolution

5We consider Google Directions as the most accurate representation of the
traffic scenario, although this assumption is not a verified fact.

6www1.nyc.gov/site/planning/data-maps/open-data/districts-download-
metadata.page
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Fig. 8. Route recommendation similarity between T-MAPS and google
directions (dots represent the mean).

if there is enough data for this. From a macro resolution,
T-MAPS aims to recommend regions which have the best
conditions regarding the applied metrics. The aim here is to
find the similarity between the routes suggested by GD and
T-MAPS, in order to enrich these routes with a description
based on the set of tweets in that path.

We query the T-MAPS and GD 812 times to recom-
mend routes within Manhattan neighborhoods. The routes
were derived from the combination 2 × Cn

k , where n = 29
(Manhattan neighborhoods) and k = 2 (origins and desti-
nations). Note that we considered routes like A → B and
B → A. The routes start and end at the center of the
region. Also, we rule out routes that start and end at the
same local. We query the routes in three different moments
(7:00 am, 3:00 pm and 7:00 pm) of a day throughout a week.
Those moments were chosen purposely, based on its rush hour
representation, and its higher volume of tweets in the dataset.
Besides this, the Jam Factor from Here WeGo increases on
those moments as well as the frequency of tweets per hour in
the dataset, see Fig. 6.

The similarity was computed matching areas where the
recommended routes by both T-MAPS and GD passed through
(using Dijkstra’s algorithm). Fig. 8 displays the similarity
between routes along eight days in the dataset, considering
three metric functions. The box-plots summarize 58,464 routes
analyzed. T-MAPS with Instant metric showed a high variation
of similarity rate, its median ranges from 50% up to 66.7%,
while Accumulated metric shows 60% to 70% and Average
metric 60% to 66.7%. It means that more than half of the
evaluated routes overlapped the GD. We expected that Instant
metric would pose the lowest similarity due to its intrinsic
disparity with other metrics since it does not consider the
historical data. As a global evaluation, the median of route
similarity reached 62% with Google Directions. Note that
T-MAPS uses a macro view, while GD does not, which implies
in fewer regions per route by T-MAPS than GD. The upper
quartile (1/4 of the routes) until the maximum value exhibited
a similarity of 75% to 100% between the routes suggested by
T-MAPS and GD.

C. Route Description Services

The applicability results demonstrated that it is possible to
aggregate information to route recommendation, so we moved

Fig. 9. Route sentiment based on the tweets text analysis.

further to explore tweets. Considering that Google Maps does
not deliver a detailed description of the routes, then any extra
information added in that path will enrich the current sce-
nario. Initially, we performed the cleaning phase in the tweet
(lowercase transformation, accent removal, token extraction,
and filtering stops words, links, and special characters). Then,
we applied three types of text mining techniques to build the
description services over the T-MAPS model: Route Sentiment
(RS), Route Information (RI), and Area Tags (AT). Fig. 9
depicts the graphical user interface of a prototype to access
the T-MAPS services.

In Fig. 9(a), the RS service allows the user to observe the
users’ feelings (positive to negative) at a given area (for more
detail see [19]). The RI service explores each area providing
a word cloud, Figure 9(b), where the word size indicates its
high-frequency over the route. The spread information enables
the users to see the big picture of highlighted events in each
area. Finally, we developed the AT service, Fig. 10. For
that service, we used the Term Frequency (TF) and Inverse
Document Frequency (IDF) – (TF-IDF) – method to measure
how important is a word to a set of tweets in given area of
Manhattan. This technique allowed us to find words which are
unique for those explored area.

T-MAPS used the Accumulated metric to characterize
Manhattan within our observation window. Any other metric
can be applied to provide a different description, achieving
a different goal. With these services (sentiment, route infor-
mation and area tags), the T-MAPS can enrich the current
route recommendation systems, indicating to the users an
extra path description or even providing routing based on
these descriptions. For instance, the user may choose a route
which expresses good feelings and beautiful environment or
alternatively, containing cultural activities.

D. Discussion

In summary, the results of Route Services showed the
value of using social media data to enrich the data from
transportation systems. We showed that the median of route
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Fig. 10. The area’ Tags (AT) of each region of the path.

similarity between our approach and Google Maps reached
62%, where T-MAPS uses region granularity while GD uses
street granularity. For a quarter of the evaluated trajectories,
the similarities achieved up to 100%. Based on that, we pre-
sented three route description services, aiming to enrich the
current route services and navigation tools with a user’s view-
point. Using natural language processing techniques, we were
able to create Route Sentiment (RS), Route Information (RI),
and Area Tags (AT).

VII. RODE: EVENT SERVICE

After the experiments with our route services, the next
challenge was to improve the detection and description of
incidents in those routes. So we develop a new service called
T-Incident which is a low-cost learning-based event detection
and enrichment mechanism built using heterogeneous data
fusion techniques. For this purpose, we designed a spatiotem-
poral grouping algorithm that fuses the incident data from two
different data sources (i.e., HERE WeGo and Bing Maps),
resulting in a new incident layer with more data coverage.
Then, by using the same approach, we fuse (i) non-incident
data (acquired from TripAdvisor), (ii) LBSM data (acquired
from Twitter), and (iii) the new incident data layer obtained in
the previous step. Moreover, we apply refined methods of NLP
to extract patterns from social media data that may describe the
incident event and its surrounding. Finally, we use a learning-
based model to identify these patterns and detect the event
types automatically. The results show the best setup of our
T-Incident approach, achieving scores above 90%. Allowing
the conception of incident detection and event description
services using LBSM.

Algorithm 1 Spatiotemporal Grouping
Input: tweets, road events, radius
Result: tweets grouped by event, incident Id, and

incident Type
/* The previous step splits each

dataset into x slices, reducing the
computation */

1 initialization;
2 for each tweets do
3 currentIncidentId← 0;
4 currentIncidentTmp← None;
5 currentDistance← ∞; /* larger than radius

*/
6 for each incidents do
7 if equal(tweets.sec, incidents.sec) or diff(tweets.sec,

incidents.sec) is (+ 1 or - 1) then
/* Tweets between the incid. time

*/
8 if TemporalFilter(incidents.starttime,

incidents.endtime, tweets.timestamp) then
/* Distance from the radius */

9 distance ← SpatialFilter(tweets.coord,
incidents.coord, currentDistance, radius);
/* Record the less distance */

10 if distance < currentDistance then
11 currentIncidentId← incidents.Id;
12 currentIncidentTmp← incidents.Type;
13 currentDistance← distance;
14 end
15 end
16 end
17 end

/* Assigning the event type
(Incident, Non-Incident, Unknown)
for each tweet */

18 end

A. Incident Data Fusion

In this section, we present a method to increase the coverage
of incident data and enrich its description by fusing data from
different sources. We argue that the greater the number of
incidents used, the more tweets can be grouped, benefiting
our learning-based approach. After acquiring data from HERE
WeGo and Bing Maps platforms, we pre-processed them to
standardize their features.

Thereafter, we conducted a spatiotemporal grouping
(see Sec. VII-B.1 and Algorithm 1 for more details). However,
the goal here was to identify an incident event reported by
both data sources, thus representing the same event. In this
case, the temporal interval and the spatial location of them
must be very close. We assume that two events are close, and,
therefore, the same, if they start on the same day and hour
but are also located at most 10 meters apart from each other.
We named these same events as Intersection. Fig. 11 shows
the frequency of each incident type by a given data source.
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Fig. 11. Hour of an incident by data source and the intersection of them.

Moreover, we can see the same events reported by both sources
in the Intersection graphic.

We also evaluated the similarity of incident types from
the Intersection. We found that the incident type similarity
between HERE and Bing reached 99.83%. In other words,
both data sources labeled the incidents almost similarly. As a
final step, we created a New Incident Layer, which combines
the data coverage from both data sources and increases the
information description about incidents, using the intersection
of them. Since each data source has its own way of reporting
incident events (e.g., detailing the road name or providing
a short textual description) the fusion enriches the whole
context.

Fig. 12 shows the spatial data coverage of each data source
and the intersection between them, during the process of data
acquisition (2018-09-14 to 208-11-06). It also shows the data
representativeness for each source. Let us consider HERE
WeGo as H and Bing Maps as B , we have (H ∪ B) = 100%
of the data, H = 80.53% of the whole data, while B = 8.31%
and the Intersection (H ∩ B) = 11.16%. The New Incident
Layer covers 100% of the entire data collected, where more
than 11% of matching incidents could be enriched based on
a short description from HERE WeGo and the information of
street intersection from Bing Maps.

B. T-Incident Design Architecture

This section presents a learning-based incident detection
approach based on heterogeneous data fusion. We started
with the hypothesis that LBSM can provide valuable infor-
mation about the traffic conditions and eventual incidents,
as previously discussed in [19].

Given the different data sources used as input to
our design, we created a spatiotemporal grouping algo-
rithm to combine together these different data sources
(see Sec. III-B) in both temporal and spatial dimensions.
In sequence, we extracted the pertinent features to compile
the user’s viewpoint around each event previously grouped by
our algorithm. Then, we developed a learning-based model to
identify potential incidents considering the user’s viewpoint.
Finally, we evaluated our approach using different spatial
grouping modes. This section describes in detail each stage
of T-Incident as depicted in Fig. 13.

1) Spatiotemporal Grouping: The grouping approach
considers the heterogeneity of the data sources used and its

Fig. 12. Spatial incident coverage per data layer.

Fig. 13. Design of T-Incident.

spatiotemporal coverage variation. Therefore, we proposed an
approach which merges the incident/non-incident data layers
with the tweets layer based on both dimensions. To do
that, we considered the incident as an event regardless of
its type (i.e. accident, construction, road hazard, disabled
vehicle and traffic), therefore also combining the different
types in only one event – Incident. Each incident has a
start location, an end location, and a time duration. Our
model considers only the incident start location as same to
the events named – Non-Incident (point of interest). Another
characteristic of our data preparation consists of setting the
non-incident time interval with the same time interval of the
data acquisition. In other words, there is no time duration for
non-incident events. Its duration starts and ends with the data
acquisition process.

Based on the incident and non-incident dataset, we are able
to conduct a temporal filter which looks for the intersection
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TABLE II

NUMBER OF TWEETS FOR EACH SPATIOTEMPORAL
GROUPING MODEL

between events and tweets. After merging those data, we per-
form a spatial filter based on the radius of each event location.
We created a set of radii, aiming to identify the better grouping
mode since we are dealing with user bias and the vast amounts
of unrelated data. This methodology enabled T-Incident
to group a different number of tweets around the event
(see Tab. II), and, thus, the information surrounding the event
can be more valuable to the context or more generalized to
it. Notice that we used tweets with coordinates provided by
a GPS. GPS needs line-of-sight with the sky to compute the
coordinates therefore, urban barriers may interrupt the sensor.
Thus, we discarded tweets without geotags.

Even though the spatiotemporal grouping could be con-
ducted in different ways (e.g., based on streets segment,
neighborhoods and a grid dividing the geographical area),
we chose the use of different radii around the incident, as our
initial approach. Tweets, which were not grouped by that
algorithm, were labeled as Unknown and removed. We noticed
a trade-off to choose the radius size and the relevance of
information floating around the event. In other words, a small
radius implies fewer data grouping, but relevant information
about the event. A larger radius results in more data grouped,
but less descriptive information about the event. This situation
becomes a challenging task when there are reduced amounts
of data acquired.

We describe the spatiotemporal grouping in Algorithm 1.
The inputs to the grouping algorithm are the tweets, road
events (incidents and non-incidents) and the radius. The
expected result is an updated tweet dataset containing the
event, incident id, and incident type. We also developed an
optimization process dividing the geographic area, latitudi-
nally, in x sections, aiming to reduce the number of operations
conducted in large areas with large amounts of data. After
that, for each tweet and incident, we tested if they were in the
same section or near with one hop up or down (Line 7). Once
satisfied, the tweet must be between the incident start and end
time (Line 8). Then, we measure the distance between the
tweet and the incident, aiming to find the minimum distance
to assign its new attributes (Lines 9-14).

2) Feature Extraction: We assume that the information of
interest floats around the observation location. Stressing the
model based on a radius around the event, makes it an intuitive
and powerful approach, as shown in Sec. VII-C. However, data
from LBSM brings issues that can lead to other challenges
such as data imprecision and user bias. In that way, the feature
extraction role aims to clean the tweet and provide a set of
words which describes the event’s surrounding better.

We first applied for each grouping model and event class a
set of NLP methods such as lowercase transformation, accent
removal, token extraction, and filtering stop words, links,
and special characters. After that, we reduced inflectional

Fig. 14. Spatiotemporal grouping based on a radius of 0.01 km ((a) and (b))
and 0.5 km ((c) and (d)).

and derivational forms of a word to a common base form.
Then, we analyzed the Term Frequency (TF) from the event,
extracting a matrix of the most frequent words mentioned
in that area. Moreover, we filtered that matrix based on the
sparsity, i.e., we removed terms that were sparse lesser than
0.98%.

We also introduced a context highlighting the step for a
specialist to reduce non-related words of a given event. This
is because, even though we conducted the previous steps, our
LBSM dataset still contained non-related words (noise) which
had to be removed. Most of the noise comes from regular
user’s account, which we used to increase the description
of incidents, but specially to describe non-incident events.
We noticed, by experiments, that the Term Frequency-Inverse
Document Frequency (TF-IDF) approach does not stress the
words which describe each event’ class accurately. Then, this
analysis was not enough to derive valuable information about
the event.

At the end of this process, we gathered the set of most
important words posted by regular and specialist Twitter users.
Fig. 14 shows an example of a set of words grouped by radius
between 0.01 km and 0.5 km. This indicated how specific or
general was the information shared within the event radius.
Figs. 14(a) and 14(b) show more words clouds, weighting them
differently and reducing the intersection between incident and
non-incident events. However, upon increasing the radius we
can see fewer words with higher weights stressing common
words between both classes [see Figs. 14(c) and 14(d)]. Our
goal is to understand this behavior and train an algorithm to
automatically identify these classes.

a) Feature reduction: The number of features obtained
from the last stage may be large enough to introduce com-
putational barriers such as the processing time, memory and
storage capacities. We conducted a method to reduce the
number of features based on their importance and frequency.
In other words, we initially developed two approaches to
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TABLE III

RELEVANT FEATURES BASED ON RADIUS OF 0.01 km

achieve that goal. The first one was the Principal Compo-
nent Analysis (PCA) to extract a set of relevant features.
This process identifies the most variable information from
a multivariate dataset and expresses it as a set of new fea-
tures – Principal Components (PCs). These PCs represent the
directions along which the variation in the data is maximal.
The second one was based on the ranking of the most frequent
words.

Both methods output the results to the specialist who makes
the decision. We noticed that the PCA did not catch a good
set of words such as the use of most frequent words. When
the tweet dataset was acquired without a track of words
(any tweet, without specific words), the PCA performs better
than the use of the most frequent words. On the other hand,
PCA was not suitable for tweets with a set of specific track
words as mentioned in Sec. III-B. As a result, we performed
the feature reduction for each grouping model and event class,
extracting only the most representative set of words from the
previous step. Tab. III shows an example of features obtained
after ranking the most frequent words from the spatiotemporal
grouping using a radius of 0.01 km.

b) Sentiment analysis: The sentiment analysis was con-
ducted for each tweet, grouping and event class, allowing
us to extract the feelings that Twitter users shared about a
particular event. To derive the sentiment from the tweet’s text,
we used a dictionary of words and its associated feelings [31].
The sentiment depends on the occurrences of the number of
words/feelings to calculate the score, and we can then associate
a sentiment (positive or negative) to the tweet. As a result,
for each tweet we extracted the set of words corresponding
to feelings and its frequencies, binding them with the set of
words processed in the previous stage, for that same tweet,
increasing the features which describe somehow these events.

3) Learning-Based Model: The last stage was responsible
for extracting useful information which better describes a
given class of event and feeds our learning-based model with
a set of features labeled by the event. In this way, we started
to deal with a classification problem. First, we chose the
most common classification algorithms (kernels), used in the
same context of this investigation, based on the literature
review [7]. To conduct this step, we used the following kernels:
Support Vector Machine (SVM), k-Nearest Neighbors (KNN)
and Random Forest Classifier (RF).

Next, we split the data into two sets, following the
convention of the most machine learning approaches: Training
Set, corresponding to 70% of the entire dataset; and Test
Set, corresponding to 30% of the entire dataset. To val-
idate the training process, we applied the cross-validation
considering 10 folds split in 70% and 30% of the training
and test datasets, respectively. Our goal was to evaluate the

training curve and the testing curve, avoiding possible over-
fitting and under-fitting. That partition was conducted for each
grouping model.

As expected, the dataset was unbalanced because the
number of tweets around the non-incident areas is bigger
than around the incident ones. In this case, we explored the
re-sampling techniques which aim to balance classes either
increasing the frequency of the minority class or decreasing
the frequency of the majority class. Our goal was to obtain
approximately the same number of observations for both
classes.

We used a random under-sampling, aiming to balance the
class distribution by randomly picking and eliminating the
majority of class examples. This strategy helps to improve
run-time and storage by reducing the number of training data
samples once the training is large enough, considering LBSM
data. However, the classifier may suffer hard consequences
since the potential useful information can be discarded. For
this reason, this step is not limited to that approach, as it
always depends on the quality and quantity of LBSM data
acquired.

After balancing the dataset, tuning the hyper-parameter
became a challenging task and an exploratory approach was
adopted to deal with. We used a GridSearchCV class from
Scikit-Learn API [32], which takes a set of parameters and
values to exhaustively combine them, aiming to find the
best configuration. Knowing that the complexity of such
search grows exponentially with the number of parameters,
we defined a set of parameters for each kernel following some
guidelines. For the SVM, we based on [33], and for the other
ones, we followed the user’s guide for Auto-WEKA [34].

4) Services: The results of the learning-based model
allowed us to understand the best spatiotemporal grouping and
the set of NLP methods to filter the LBSM texts, and, then,
to accurately outline the events. Based on that, we were able
to output the incident and non-incident event detection service
and the event description service.

Once we identified an event, we started to analyze its con-
text. To do that, we conducted a text summarization process,
aiming to create a short and coherent version of a longer
document. We considered a document a set of tweets grouped
by incident type, i.e., we applied the text summarization to
a group of tweets labeled by incident type and hour, and by
incident id. This process provides a short description for each
group, providing the users and traffic planners the viewpoint
of the LBSM users regarding the transit events and points of
interest.

In that area, there are two methods of text summarization:
Extractive and Abstractive. The first one selects the tweets,
ranks their relevant phrases and chooses only those which
are meaningful to the event. The abstractive method aims to
generate entirely new sentences to capture the meaning of the
event. For this version of T-Incident, we developed the event
description service, using the extractive method.

C. Evaluation

In this section, we describe T-Incident performance
evaluation against the set of classification algorithms and
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Fig. 15. Classification results based on different kernels and metrics.

spatiotemporal grouping modes as outlined in Sec. VII-B.
Then, we present services to detect and enrich the event
description.

1) Event Detection: Our incident detection approach was
based on an exploratory analysis of classification algorithms,
hyper-parameters and radius. Fig. 15 shows the results regard-
ing a Training and Test process. We validate our training
process performing a Cross-validation approach which aims
to split the training set in training and validation sets among
10 folds. Fig. 16 shows the learning curve of each kernel per-
forming on a spatiotemporal grouping with radius of 0.01 km
and 0.5 km, as an example. The main goal here is to study
the generalization of a given model, avoiding over-fitting and
under-fitting, and find out the best spatiotemporal grouping.
We noticed that the radius of 0.01 km [Figs. 16(a), 16(b),
and16(c)] delivers the best score, around 90%, in most kernels
after 140 training samples where we see the curves converging
and the model stabilization. However, the reduced amount of
data limits the exploration of event description service.

Once we increase the radius, we were able to see the curves
decreasing as depicted in Figs. 16(d), 16(e), and 16(f). Using
a 0.5 km radius, we observed a score between 58% and 65%.
Decreasing the radius to 0.4 km, we noticed averaged scores
above 61% and below 65%. A radius between 0.3 km and
0.2 km showed very close results as scores above 65% and
below 70%, in average. Using 0.1 km, we obtained scores
around 70%, and between 75% and 80% considering the radius
of 0.05 km.

We deal with a trade-off between higher radius
(more grouped data and smaller scores) and lower radius
(fewer data and and higher scores). The important lesson

learned here is the application of a consistent methodology
that was able to provide a generalization model to detect
incidents. Next, we evaluated three metrics from the
Cross-validation and Test:

i) F1 Score: is the weighted average of Precision and
Recall. This score takes both false positives and false
negatives into account (2×Recall×Precision)/(Recall+
Precision);

ii) Recall: measures how good a test is at detecting the
positives (T P/T P + F N);

iii) Precision: is the ratio of correct predicted positive
observations to the total predicted positive observations
(T P/T P + F P).

Fig. 15 shows the best set of parameters (kernel and radius)
that can feed the T-Incident service. As suggested in the
learning curves, the better spatiotemporal grouping could be
the radius of 0.01 km which shows a Test score above 90% in
all metrics evaluated. However, we achieved very good scores,
above 70%, due to the quality of LBSM data. Taking this fact
in consideration, we can even use a 0.1 km radius keeping the
F1 sore, Recall and Precision around 75% on average. After
the spatiotemporal grouping, we observed

a) the correlation among those scores and the radius sizes,
and

b) the decrease of scores, which can be explained by the
increase of intersection between the incident and the
non-incident set of features.

2) Event Description: The results observed in the detec-
tion stage, allowed us to identify the best spatiotemporal
grouping which accurately outlines the event. In this sense,
we conducted a text summarization process, based on the
Extractive method, creating a short and coherent version of the
event. Notice that we used for this analysis the spatiotemporal
grouping with both radii 0.01 km and 0.1 km, based on the
trade-off between accuracy and size of the data sample.

As an example of the T-Incident description service with a
radius of 0.01 km, the Text 1 summarizes a specific incident
event on Franklin D Roosevelt Drive. We highlighted the
words to make this text clear for the reader to understand
what happened there. With that analysis at hand, we aim to
enable users and road managers to understand and decide what
can be done about it.

Text 1: Incident description with a radius of 0.01 km.

At the same time, using the spatiotemporal grouping with
a radius of 0.1 km, for instance, we analyzed a specific
non-incident event, the Town Hall and its surroundings. The
Text 2 summarizes that area, highlighting the top trends of
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Fig. 16. The learning curve of a given kernel and spatiotemporal grouping.

Text 2: Non-Incident description with a radius of 0.1 km.

places which were extracted by users’ impressions. In that
way, it is possible to find out cultural places; where to book
a hotel’ room and where to dine in that area.

Moreover, the T-Incident description service provides an
overview of incident events in each area and at a given
day and hour. The Text 3 was summarized considering the
spatiotemporal grouping with a radius of 0.05 km in Manhattan
at 5 am, for instance. It delivers to the users and road managers
a feasible and low-cost way to understand areas which may
be avoided or even to take careful attention during that hour.
Notice that, our analysis aims to focus on the top trends
of incident events at a given day and hour, enriching the
current context and delivering to the public a very short and
summarized information.

D. Discussion

The Event Services delivers real-time incident alerts using a
learning based approach, which considers the tweets historical
“trends”. After the training process, the model can act in
real-time, delivering to the user and managers the incident
event (incident or non-incident), based on one or more tweets.
Besides, the description service can group that event with
its surrounding delivering a summarized description. We also
noticed that, navigation tools provide incident events in differ-
ent time interval compared to user reports. This event services

Text 3: Incident description in Manhattan at 5 am with a radius of 0.05 km.

also enables to evaluate the quality of data on transportation
system scenario.

This study does not show the case where there is incident
data reported by navigation tools but not LBSM data surround-
ing it. In these cases, our methodology is not able to detect
or even enrich them. However, RoDE aims to complement
the current transportation system data, and not replace them.
In this sense, the navigation tools still use incidents with poor
description, when there is a lack of LBSM data availability.
On the other hand, RoDE can detect incidents not reported by
navigation tools and also enrich incidents with a summarized
description.

In summary, the results showed the best set of parameters
that can feed our T-Incident approach, leading to the event
detection and event description services. The better spa-
tiotemporal grouping mode considered the radius of 0.01 km,
showing that incident detection scores above 90% in all
evaluated metrics. However, we considered that a very good
result presents scores above 70% due to the quality of
LBSM data. As a result, the event description service allowed
us to provide a summarized description for each group,
providing users and traffic planners the viewpoint of the
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LBSM users regarding the transit events and points of
interest.

VIII. CONCLUSION

This investigation introduced the Road Data Enrichment
(RoDE) framework, a low-cost solution to ITSs based on
Heterogeneous Data Fusion. RoDE delivers high-level infor-
mation through two sets of services, namely Route Services
and Event Services. As a result, navigation systems, road
planners and the general public can access a more descriptive
and enriched transportation system data. We have been trying
to validate the hypothesis that the viewpoint from LBSM
users can complement current transportation system tools.
Therefore, the effort we spent to develop these methodolo-
gies allowed us to quantitatively evaluate how much we can
enrich (qualitatively) the suggested information from tradi-
tional traffic systems. We did a qualitative analysis by convert-
ing textual data into traffic/incident information (sentiments,
route and incident descriptions) and quantitative analysis by
converting words frequency, number of incidents, and jam
factors into traffic/incident information.

The results discussed here may serve as a basis for further
exploration of new research ideas. As future work, we plan to
increase the quality of the route description by implementing
different learning strategies within T-MAPS. T-MAPS could
also use data from regular LBSM users’ accounts and use
reputation models to handle conflicting information. We also
plan to extend the event services by developing strategies
to eliminate user intervention in the feature extraction stage.
In addition, we have noticed that LBSM provides data with
some time differences when compared to navigation tools.
In other words, Twitter users report incidents sometimes early
or later compared to the incident start and end time of
navigation tools, respectively. In this sense, T-Incident can be
extended to evaluate the incident duration time considering
the LBSM, or even evaluate when a given user message is no
longer valid based on the incident event duration.
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