
Road Traffic Density Estimation Based on
Heterogeneous Data Fusion

Philipp Zißner∗, Paulo H. L. Rettore∗, Bruno P. Santos†, Roberto Rigolin F. Lopes∗, and Peter Sevenich∗
∗Dept. of Communication Systems, Fraunhofer FKIE, Bonn, Germany

Email: {philipp.zissner, paulo.lopes.rettore, roberto.lopes, peter.sevenich}@fkie.fraunhofer.de
†Dept. of Computer and Systems, Federal University of Ouro Preto, Joao Monlevade, Brazil

Email: bruno.ps@ufop.edu.br

Abstract—This investigation starts with the hypothesis that
fusing heterogeneous data sources can increase the data coverage
and improve the accuracy of traffic-related applications in Intel-
ligent Transportation Systems (ITS). Therefore, we designed (i)
a Data Fusion on Intelligent Transportation Systems (DataFITS)
framework that allows collecting data from numerous sources
and fusing them according to spatial and temporal criteria;
(ii) a traffic estimation method that groups road segments into
regions, identify correlations between them, and measure the
traffic distribution to estimate traffic. As a result, DataFITS
increased by 130% the number of road segments coverage and
enhanced, by fusion process, around 35% of road overlapping
data sources. We evaluate the traffic estimation of the 15 most
correlated regions, where the fused data together with correlated
areas resulted in the best traffic estimation accuracy by reaching
up to 40% in some cases and 9% on average.
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I. INTRODUCTION

Intelligent Transportation Systems (ITSs) are a key concept
to improve current transportation systems in Smart Cities by
using data and communication technologies. ITSs aims to en-
hance traffic efficiency and reduce accidents while minimizing
the time wasted in traffic jams, emissions, and fuel consump-
tion. In this context, traffic can influence cities’ dynamics by
causing delays in the mobility of people and goods. Thus,
understanding traffic behavior and transportation systems may
help to better manage it by re-routing vehicles and adjusting
traffic flow, which can improve overall urban mobility.

To better understand and model traffic behavior a significant
amount of data is required. These data can be collected
through various sources such as built-in vehicle sensors, traffic
monitoring systems, news, social media, smartphones, and
many others [1]. Traffic-related data may assist the ITSs in
predicting road events such as traffic and accidents more
accurately. Although there are plenty of data sources available
nowadays, most of them provide data with low quality (e.g.,
Spatio-temporal gaps) or limited free data access.

In this sense, the data fusion concept, which attempts to
improve these aspects by fusing many diverse data sources,
can be a solution to the data quality and availability problem.
While this appears to be a promising approach, the process is
challenging due to data issues such as different data structures,
errors in the acquisition and acquired data (e.g., wrong mea-
surement, missing values), outliers, conflict, incompleteness,
and vagueness [2].

In this paper, we propose a traffic density estimation
framework based on heterogeneous data fusion. First, we de-
signed the Data Fusion on Intelligent Transportation Systems
(DataFITS), a framework that aggregates data from heteroge-
neous data sources and fuses them temporally and spatially. As
a result, DataFITS produces more enriched and varied data that
describes the transportation system. Second, we use the fused
data to feed our proposed traffic density estimation model.
The method groups road segments into regions and then it
draws correlation between them to increase the sample of
data. Such data will be used latter to estimate traffic based
in the computed historical traffic density distribution data.
Lastly, we evaluate the accuracy of our traffic estimation using
various metrics (Coefficient of determination (R2), Dynamic-
Time-Warping (DTW) [3], Granger Causality (GC) [4], Mean
absolute error (MAE) and Root-Mean-Square Error (RMSE)).
As a result, we show that by using fused heterogeneous data,
it is possible to improve the traffic estimation accuracy up to
40% in some cases and 9% on average.

The main contributions of this paper are listed below:
• The design and evaluation of a heterogeneous data fusion

framework.
• A traffic correlation over different regions in a city based

on time windows and weekdays.
• A traffic density estimation based on simple statics using

heterogeneous fused data.
• Discussion over quantitative results from experiments

using real data, testing the benefits of data fusion to
enhance a traffic estimation application.

In the remainder, this paper is organized as follows: First,
Section II briefly reviews the recent literature, discussing
the usage of heterogeneous data fusion and different traffic
estimation models. In Section III, we explain the design of
DataFITS and the traffic density estimation. The evaluation of
the framework is described in Section IV, creating various data
samples to test the accuracy of the respective traffic estimation.
Finally, we conclude this paper in Section V, also reviewing
future directions.

II. RELATED WORK

This section examines the recent literature on data fusion
techniques to support ITS, with a focus on investigations that
describe traffic prediction models.
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In [5] the authors provide a platform to gather, process, and
export heterogeneous data from smart city sensors and create
various data visualizations. We share a similar motivation,
further providing a fusion approach and a methodology for
traffic prediction, instead of solely designing the data platform.

In general, data fusion is challenging due to the data se-
mantic heterogeneity and the different spatio-temporal aspects
[1], [2]. The present paper was motivated by our previous
investigations [6]–[9] also using data fusion to provide more
reliable and accurate applications for transportation systems
within a smart city. Moreover, inspired by the ideas in [10],
we extended Traffic Data Enrichment Sensor (TraDES) by
designing a general data fusion framework DataFITS in this
investigation. TraDES is a low-cost traffic sensor for ITS that
combines vehicle and traffic data to train a machine-learning
algorithm to learn from automotive characteristics such as
speed, CO2 emissions, fuel consumption, and so on, the road
traffic levels, expanding the spatio-temporal data coverage.

Furthermore, there has been a lot of research conducted
in recent years on traffic prediction and forecasting. Abadi,
et al. [11] developed a model to predict traffic up to 30
minutes ahead in time using an autoregressive model with real-
time and historical data. The model produces some reasonable
predictions of short-term traffic, yet the quality of results is
contingent on the amount of data available to train the model
in a variety of circumstances (e.g., normal and incident traffic
situations). Here, DataFITS gets around the problem using data
fusion on different sources to enhance the input dataset for the
traffic estimation process. The study of traffic prediction using
these methods is a well-known area, and we may come across
many comparable approaches [12], [13].

The use of correlated areas to increase data quantity is a
rather unique approach, as most literature solely utilizes data
from connected roads that are linked with one another. Wang et
al. [14] investigated how combining traffic data from different
urban areas might be used to improve fine-grained prediction
of traffic. Their method grouped several correlating road links
into urban regions and predicted both fine- and coarse-grained
traffic. However, they are not considering increasing the
amount of information by using data from multiple correlated
regions or heterogeneous fused data.

The usage of heterogeneous data fusion to provide a traffic
prediction model is also discussed in the literature, mostly
combining traffic data from stationary sensors and probe
vehicles [15], [16]. In [16], the authors provide a prediction
model based on heterogeneous data fusion, by combining flow
data acquired from cameras and travel time through GPS
observations. We extend the current literature, by providing
a framework that is capable of fusing various data types,
not limited to traffic features, and use this data to create a
traffic prediction model. Our methodology is not dependent
on existing datasets and is going to allow users to add further
data sources, once it is published as an open-source project.
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Fig. 1: Traffic density estimation design.

III. DESIGN

In the following, we propose a traffic density estimation
framework based on heterogeneous data fused across similar
regions, as a solution for the issues raised in the introduction.
The goal of this paper is to demonstrate the advantages of
heterogeneous data fusion in traffic density measurement.

A. DataFITS

DataFITS, shown in Fig. 1 (A), is a framework implemented
in Python and R, capable of collecting, preparing, processing,
and analyzing heterogeneous data from transportation systems
scenarios to improve the data quality through data fusion.
The results of DataFITS can be utilized in a variety of ITS
applications, such as traffic estimation.

1) Data Acquisition: DataFITS first stage gathers data us-
ing many Application Programming Interfaces (APIs), parsers,
and web crawlers based on predefined user criteria such as
geographical location, time interval, and predetermined data
sources.

2) Data Preparation: In this stage, the data is prepared in
a variety of ways. First, all names utilized by each data source
are converted into standardized common names to identify the
data features. Second, we map distinct values from a certain
feature to comparable data types, e.g., descriptive traffic values
(normal, increased, congested, etc.) to a numerical representa-
tion (0 - 10). We provide an initial mapping in the framework
configuration, which can be changed based on the individual
user experience. Then, DataFITS transforms the data into a
valid internal format for map matching. In addition, a Shapefile
(SHP) that contains the road network for the observed region
data is acquired.

3) Data Processing: The prepared data is processed, aim-
ing to fuse the heterogeneous data in space and time. The
former fusion uses the map matching technique, such as Fast



Map Matching (FMM)1, where the data from each source is
mapped onto the same underlying road network, describing
the spatial fusion. Therefore, it can be grouped by unique
roads or sets of connected roads, utilizing the information
about the traversed path and matched edges, we obtain from
the FMM. Furthermore, it conducts a parameter to consider
the possible error in the GPS measurement, increasing the
data reliability. A temporal fusion can be achieved using
aggregations over time (e.g., hour or day) allowing to group
the data regarding different temporal aspects. To overcome
the issue of differences in timestamps and time granularity
between different sources, we apply a floor function on the
time value, based on the defined interval in the configuration
file, to ensure all sources have the same time value. The data
processing step has two outputs: (i) the enriched data in a
CSV file, the result of the spatio-temporal fusion, and (ii) a
geojson file format that enables a pre-visualization of the data
by third-party tools such as QGIS.

4) Data Usage: DataFITS processes the CSV file to com-
pute statistics and further visualizations. The spatial coverage
increasement after the fusion process can be seen through heat
maps, bar plots, and more. For the temporal data fusion, it
provides statistics of the information for different time spans
(scatter-, line- or correlation-plots). The fused heterogeneous
data, outputted by the framework, is used as the input data for
the traffic estimation approach described in the next section.

B. Traffic Density Estimation Framework

We describe the methodology of our traffic density estima-
tion framework based on heterogeneous fused data provided
by DataFITS, depicted in Fig. 1 (B).

1) The Data Split: To start with the traffic estimation
process, we split the available heterogeneous fused database
into a training set, used to create a data sample, and a test set,
which will be used to evaluate the accuracy of the samples
(step 1). Here, we assume that the size of both sets is defined
by the user and thus correlated to the amount of data available.

2) Filter the Data: In step 2, we decide on a traffic-
estimation region and set the day and time for the observation.
First, using data from the map matching process, we establish
a list of unique regions. Therefore, we use the opath that
relates connected road segments on the network to each piece
of data input that was matched and group them based on
their contained road IDs. To initialize the regions, we take
the distinct opath values, with each data entry corresponding
to the same region, if more than 50% of the covered roads are
identical. This is an initial approach to creating regions and
will be improved throughout the framework development, by
considering spatial correlation to create regions.

3) Remove Outliers: In the third step, potential outliers
in the training data are identified and eliminated. Those
erroneous data might bias the sample, lowering the accuracy
of the estimate. In this investigation, we define outliers to
be observations having only 0-values for traffic and speed,

1https://github.com/cyang-kth/fmm

(measurement errors) or record values that are too far apart
from the overall regions mean regarding the observed day
of the week. Here, we consider as outliers those data ob-
servations that lie outside of upper and lower boundaries:
total traffic avg ± standard deviation. This approach may
remove a high amount of data in an abnormal traffic scenario
and therefore will be changed in the future, regarding our
ambition to further include incident information into the
prediction model. From this step (3) two directions could
be taken based on the evaluation purpose. In one way (steps
3→ 4, 5), we compute similar regions and combine the most
correlated ones to increase the amount of data. On the other
way (steps 3→ 6), the traffic computation is done without the
combinations of data from similar regions.

4) Compute Similarities: The main aspect of this analysis
is to identify correlated regions that show a similar traffic
behavior (step 4). To define similar regions, we calculate two
different metrics, Pearson Correlation and Dynamic-Time-
Warping [3], between the time series of traffic values (8 (C)
for the regions 8 and 9 in a correlation matrix (1). Thus, low
correlation indicates no dependency on the values between
two regions, whereas 1 shows a maximum correlation between
them.

-8, 9 =

∑!
C=1 ((8 (C) − (̄8) (( 9 (C) − (̄8))√∑!−C

C=1 ((8 (C) − (̄8)2 ·
√∑!−C

C=1 (( 9 (C) − (̄ 9 )2
(1)

To measure the value of distance between two regions we use
DTW, which compares the traffic values of two different time
series under the assumption that the values are not perfectly
synced, but follow a similar pattern. Regarding our context,
this metric shows similarities between regions, even if the
values are shifted by a low amount of time (e.g., 10 min.).

5) Combine Similar Regions: We use the correlation of
different regions to increase the traffic information by grouping
their data. Moreover, in case of the absence of historical data in
a particular region, we can use this data to improve the traffic
density estimation. Using a given threshold for each metric,
we can choose the regions that we consider similar based on
the following formula. The variables 0 and 1 represent the
Pearson Correlation and DTW respectively, with CℎG denoting
the threshold of a given metric G as shown in (2):

0 ≥ Cℎ0 ∧ 1 ≤ Cℎ1 (2)

The data from all regions that fulfill this equation is chosen
to increase the information for the observed region (step 5).

6) Computing traffic: To create the data sample for estimat-
ing the traffic, we are providing a simple prediction algorithm
that creates a value for each day of the week in the 10-minute
interval. First, we calculate a mean value based on the data
from our initial observed region, combining the traffic values
from the complete training set for each respective weekday.
Next, we compute the average traffic value from the additional
available data covering similar regions. Calculating the mean
of those two averages results in our final prediction value (step
6). This is an initial version of a prediction algorithm with a



low complexity, which is going to be further improved in the
future (e.g., adding parameters that control the influence of
single values from different data sources).

7) Estimation Accuracy: To evaluate the accuracy of the
traffic estimation, we select the test data (the last data
collected) from our heterogeneous fused data (step 7) and
calculate the respective mean values for each weekday. We
compare it to the estimated traffic by using common metrics
for data estimation and forecasting such as R2, DTW, GC,
MAE and RMSE.

Our proposed methodology is flexible enough to allow
many parameters combinations such as different sizes of
training/testing datasets; choose which data samples are used
throughout the process; other metrics to draw regions simi-
larity or evaluate the results can be plugged in. This leads
to many opportunities for different analyses. Here, our focus
is on evaluating the benefits of heterogeneous data fusion
and grouping data from similar regions regarding the traffic
estimation approach.

IV. EVALUATION

In this section, we conduct different experiments to quan-
tify the fusion of heterogeneous traffic-related data by the
DataFITS and use the fused data to train a model to estimate
traffic density.

A. The Raw Dataset

The data acquisition process was set up to collect data of
three different categories: traffic, incident, and intra-vehicular.
Those data are collected from different commercial providers
(HERE maps and BING) or open platforms (OpenData (OD)
and Envirocar). HERE and BING provide data combining
fixed sensors and probe vehicles, OD uses data from fixed
sensors and Envirocar produces probe data. We gathered data
from those providers in intervals of 10 minutes for 8 weeks
over the city of Bonn in Germany. A non-exhaustive list of
collected data are, for example, flow level and speed related
to traffic, type of incident, and an identifier of the event
are examples of incident-related data. Also, intra-vehicular
data are gathered such as speed, fuel consumption, and CO2
emission. All reported data contain geolocation and timestamp.
Combining the different data types can show correlations
within the features, especially to analyze traffic patterns con-
cluding from an incident event, and is an aspect we want to
further research in the future.

B. The Potential of Data fusion

To analyze the general benefits of heterogeneous data fusion
in the context of ITS, we quantify the numbers of road
segments covered by each data source, displayed in Table I.
It shows the single source exclusive coverage information
and the number of overlapping segments that are covered
by multiple sources. Therefore, we observe that the sources
vary in their coverage, with Traffic HERE holding 20, 94% of
the unique roads, indicating a higher coverage in comparison
to the open data traffic information. Concerning incidents,

TABLE I: Covered road segments by data source.

Source
Total
Roads

Unique
Roads

Single source exclusive
coverage in (%)

Traffic HERE 684 339 20,94%
Traffic OD 581 195 12,04%
Incident HERE 206 53 3,27%
Incident BING 597 256 15,81%
Construction OD 52 31 1,91%
Envirocar 433 178 10,99%
Overlapping 567 567 35,02%

Total 1619

BING covers a much higher amount of unique roads, 256 in
comparison to 53 reported from HERE and 31 available due
to OD. The number of overlapping road segments (35, 02%)
reveals the potential of using data from multiple sources to
enrich the available information on those roads through data
fusion. We limit the framework, assuming that the data is
reliable without evaluating the quality of sensors. However,
this will be considered in future states of the fusion process,
changing the influence of a single source to the fused data.
Overall, comparing the 684 roads reported by HERE, which
is the data source with the highest quantity and coverage data,
to the 1619 unique roads covered after the fusion process, the
ITS was able to increase by 137% on the data coverage.

C. Traffic Density Estimation

To demonstrate the benefits of fused data on our traffic
density estimation, we draw comparisons between estimations
made by: i) Fused Data with Grouped Regions (Fused GR)
that consider all steps described at Sec. III; ii) Raw Data from
a single source (RAW)-{HERE or OD} and iii) Fused Data
from a Single Region (Fused SR) that uses the fused data
from DataFITS but skips steps 4 and 5 of Fig. 1 (B). The
following comparisons are made to show that our methodology
can improve the traffic density estimation, by showing the
benefits of using Fused GR instead of RAW.

The fused data (step 1 of Fig. 1) was split into 75%
of the dataset for training and 25% for testing the model.
The training data encompasses a time frame of 6 weeks
(28.06.2021 − 08.08.2021) with the testing data two weeks
ahead (09.08.2021 − 22.08.2021). The goal is to estimate the
traffic density for working days (Monday to Friday) in rush
hours (14h to 18h).

We carried out the steps presented in Sec. III over the fused
data, like removing data points containing only zero values
or outliers. To create the Fused GR dataset, we assume that
similar regions have Pearson Correlation ≥ 0, 85 and �), ≤
0, 3. By selecting all similar regions, we create a traffic density
data sample, calculating the mean traffic level and comparing
it against the test data.

We used five different metrics to measure the traffic esti-
mation accuracy, where: i) Coefficient of determination (R2)
express the proportion of variance, mainly used in the context
of regression models. Here, it is used to evaluate the density
estimation quality. Values close to 1 indicate a perfect fit,
while negative values indicate a model that fits worse than
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Fig. 2: 4 examples for traffic estimation.

a horizontal straight line, indicating a bad model; ii) The
Dynamic-Time-Warping (DTW) is a similarity metric between
time series. We use DTW to compare the time series of traffic
density estimation and the testing data. Low DTW values close
to 0 indicate high similarity between the series; iii) Granger
Causality (GC) is a statistical test that indicates if one time
series is useful to forecast another. Here, we consider that
if the GC value is below the threshold of 0.05, it indicates
a useful traffic density estimation; iv) Mean absolute error
(MAE) sums up the average difference of each estimated value
and the actual observation, its values vary from 0 to ∞. The
lower the value is, the better the estimation result; v) The Root-
Mean-Square Error (RMSE) is the square root of the standard
deviation from all residuals. It’s similar to the MAE but adds
more weight on larger errors.

Fig. 2 shows the traffic density estimations and the ground
truth (i.e., the testing data) curves for a subset of examples
(due to limited space). The traffic density values vary from
0 to 10 (non-traffic to jammed traffic) and the displayed
data is gathered from different highways in 2 days (Tuesday
and Thursday). Table II complements the visual information
by tabulating, for the same regions, all estimation accuracy
metrics, highlighting the best results in bold. Taking a look
at Example 1 of Fig. 2, the traffic density estimation using
Fused GR (red line) and Fused SR (orange line) present values
close to the ground truth (black line). The samples are nearly
equal, but Table II is showing that Fused GR is superior in
most of the tested metrics. This indicates that using data from
correlating regions slightly improves the traffic estimation in
this case. Moreover, the benefits of heterogeneous data fusion
(red and orange line) suggest better accuracy compared with
the samples using raw data (blue and green).

Similarly, Example 2 in Fig. 2 shows that the fused data
achieves the best estimation result with Fused GR and Fused
SR being the same values, due to no other similar region
available. A R2 value of 0,59 indicates a good fit of the
model, supported by the low DTW value of 0,44 and small
error values. The RAW samples are worse, indicating that
just using the process of fusion and outlier removal without
further enrichment through data from similar regions, can

TABLE II: Accuracy metrics for traffic density estimations.
A lower value indicates a better result (bold), except by R2.

Ex. Metric Fused GR RAW
HERE

RAW
OD Fused SR

R2 0,58 -1,22 0,3 0,5
DTW 0,75 1 1,23 0,74

1 GC 0 0,13 0 0
MAE 1,2 3,29 1,87 1,34

RMSE 1,69 3,69 2,18 1,85
R2 0,59 -1,49 -0,14 0,59

DTW 0,44 1,77 1,14 0,44
2 GC 0 0 0 0

MAE 1,01 3,26 2,15 1,01
RMSE 1,41 3,48 2,36 1,41

R2 0,08 0,44 -0,81 0,04
DTW 1,16 0,74 1,45 1,15

3 GC 0,25 0,98 0,53 0,09
MAE 2,15 1,77 3,03 2,19

RMSE 2,78 2,17 3,89 2,84
R2 0,66 0,6 0,46 0,27

DTW 0,36 0,77 0,76 0,33
4 GC 0,15 0,06 0,05 0,24

MAE 1,29 1,82 1,72 1,78
RMSE 2,05 2,21 2,58 2,77

Legend
Fused Data
Group reg.

Raw Data
Fused Data
Single reg.

provide huge benefits to the accuracy of the estimation. The
R2 measurements are negative indicating a worse fit of the
model, complemented by all other metrics, like a DTW of
1,77 for RAW-HERE.

The results presented in Example 3 demonstrate an opposite
case, where the data fusion leads to a worse estimation
compared to using RAW-HERE. The plot shows that data
samples from RAW-OD is very coarse and presents biases
when compared to the ground truth. Fusing the data from
OD and HERE increases the estimation accuracy, but is still
lower compared to using only data from RAW-HERE, shown
through all metrics except GC. A strong benefit is measured
especially through the R2 metric of 0,44 and a DTW of 0,74.
We observe, that using data from correlating regions slightly
improves the estimation, especially considering the R2 (0,08
to 0,04), MAE (2,15 to 2,19) and RMSE (2,78 to 2,84). This
example indicates the problem of fusing fine-grain and coarse-
grain data together leading to imprecise results. However,
comparing the fused samples to RAW-OD (coarse-grain data),
the fused data shows a significant traffic estimation accuracy
improvement.

The fourth Example shows that all estimated values are
close with Fused GR achieving the overall best result. Fusing
the data of both sources and one more correlating region
improves the metrics R2 about of 0,66, MAE about of 1,29
and RMSE about of 2,05. Considering Fused SR, it shows
the best DTW measurement about of 0,33. Overall both fused
samples have a better accuracy compared to RAW-OD and
especially RAW-HERE, furthermore revealing the benefits of
our proposed approach.

D. Overall Accuracy

To compare the overall accuracy of our traffic estimation
based on data fusion, we expand the number of regions
considered to 15 overall observed working days. Table III



TABLE III: The overall accuracy of our traffic estimation.

Data Sample R2 DTW GC MAE RMSE
Fused GR -0,11 0,53 0,23 1,19 1,50
RAW-HERE -0,25 0,58 0,23 1,31 1,58
RAW-OD -1,36 0,81 0,38 1,67 2,06
Fused SR -0,14 0,53 0,25 1,21 1,52

shows the average for each metric and highlights the best
results in bold.

By comparing the use of Fused GR (row 1) against RAW-
{HERE or OD} (rows 2 and 3) to estimate the traffic density,
the overall best results are achieved using Fused GR. We see
that for all averaged metric values our approach achieves the
best results. In the case of GC, RAW-HERE scores the same
average value, however, the improvements made by Fused GR
compared to RAW-HERE in all other metrics are significant.
For DTW and MAE we have an improvement of 9%, followed
by a 5% better performance regarding RMSE. In comparison
to RAW-OD, the benefits of heterogeneous data fusion are
even visible due to an accuracy improvement of up to 40%
for GC and 35% in DTW. The average error metrics could be
improved by over 25%.

Comparing the average metric values of Fused GR and
Fused SR we see that they are quite similar, scoring the
same average values for the DTW. On all other metrics the
Fused GR achieves better results, improving the metrics up
to 8% for GC and 1% regarding the MAE and RMSE. This
indicates that the usage of correlating regions leads to a minor
performance increase. In summary, we were able to quantify
the benefits of a heterogeneous data fusion together with the
grouping of similar/correlated regions, especially compared
to only information from one data source (RAW-OD). For
all metrics, we see better results on average, increasing the
accuracy of our traffic estimation.

V. CONCLUSION

In this paper, we proposed a traffic density estimation ap-
proach using heterogeneous fused data through the DataFITS
framework which increases and enrich the available data, in a
given urban area, by fusing them. According to the number of
unique reported road segments in Bonn, DataFITS was able to
increase by a factor of more than two times. Moreover, 35%
of these road segments overlap, meaning that we can enrich
the information by fusing the data from multiple sources.

With the fused data, our traffic estimation was able to
consider more road segments and identify similar regions used
to improve the estimation accuracy. The traffic estimation
was tested against using a single data source and fused data
from a single region. The fused data led to better accuracy
in traffic estimation, especially compared to using only data
provided by a single source. Fusing the more coarse data
reported from OD with the detailed data from HERE benefits
the traffic estimation, leading to way better estimations in
certain cases and a performance increase of up to 9% on
average. Comparing Fused SR with Fused GR, the average
metric results are quite similar, slightly better with the enriched

information. However, using data from correlated regions im-
proved the overall accuracy for most examples. This indicates
that enriching the data with information from similar regions
is beneficial in some cases, and results in a better performance
on average, compared to only using the fused data.

As future work, we plan to add vehicular data allowing the
analysis of driving behavior, emission, and fuel consumption
in traffic areas and add more cities to the data acquisition.
Furthermore, we plan to design a methodology to include the
incident information to the traffic prediction model, allowing
the correlation between them.
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