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Abstract—This study investigates the robustness of a Software-
defined Networking (SDN) controller when confronted with a
Distributed Denial-of-Service (DDOS) attack in a tactical envi-
ronment. A proactive defense mechanism is introduced to detect
and respond to a flooding of “packet-in” requests, triggering a
response once the network features indicate an anomaly. The
methodology consists of two components: the Cyber Defense
Agent (CDA), consisting of monitoring, feature engineering,
detection, and responses, and the Cyber Attack Agent (CAA),
including the preparation, execution, and evaluation of the attack.
The CDA monitors all the IP flows from the SDN controller
and processes four main features such as the average number
of “packet-in” requests, the response time to these requests, the
entropy of IP addresses and ports for source and destination,
and “packet-in” requests per switch to identify compromised
switches. All the components were emulated and tested, collecting
quantitative evidence to demonstrate the effectiveness of both
agents.

Index Terms—Tactical networks, Software-defined Network-
ing, Resilience, Cyber security

I. INTRODUCTION

Software-defined Networking (SDN) separates the network
control from data forwarding, allowing for direct programma-
bility through decoupling control and data plane [1]. This
introduces versatility across diverse scenarios, like civilian
and military, that can be established through the usage of
SDN [2], by eliminating dependence on specific transmission
technologies and vendors. This flexibility allows networks
to incorporate various transmission technologies, including
Bluetooth, Wi-Fi, Ethernet, and those relevant to Tactical
Networkss (TNs) such as High Frequency (HF), Ultra High
Frequency (UHF),Very High Frequency (VHF), and Satellite
Communications (SatCom), which have specific requirements
with a necessity for tailored SDN solutions [3]–[7].

Numerous factors contribute to fluctuations in TNs, includ-
ing mobility, radio capabilities, terrain, security risks, and
signal interference. Consequently, tactical edge systems must
demonstrate resilience against connection disruptions, network
changes, cybersecurity risks, and dynamic policy management.
Adopting SDN to enhance TNs emerges the Software-defined
Tactical Network (SDTN). However, several challenges arise
from that symbiosis, such as network vulnerabilities, Single
Point of Failure (SPoF), Controller Placement Problem (CPP),

ever-changing topologies, and control overhead to network
management.

A significant threat to SDTN stability emerges when con-
trollers fall target to malicious attacks. Once in control, at-
tackers can either disrupt or manipulate the communication to
their advantage, requiring resilient controllers to mitigate these
threats. Such controllers should not only recognize ongoing
attacks but also employ predefined countermeasures. Hence,
the controller must be capable of detecting and responding to
diverse attacks. This paper extends the previous research [6]–
[9], emphasizing the need to enhance resilience in SDTNs,
as the literature mainly focuses on SDN disregarding tactical
aspects. Our work assesses controller vulnerability of cyber-
attacks and introduces a defensive strategy to quickly detect
abnormal control plane activity and respond by activating a
reliable backup controller or deactivating the suspicious switch
ports. This is done by introducing two agents: Cyber Defense
Agent (CDA), Cyber Attack Agent (CAA). This approach en-
hances network resilience against controller failures and may
reduce the risk of unauthorized network access. In summary,
our contributions are as follows:

• Introducing two agents. The CDA is capable of mon-
itoring, featuring engineering, detecting anomalies, and
reacting. While then CAA creates successful attacks,
challenging the CDA.

• A method to identify ongoing Distributed Denial-of-
Service (DDOS) attacks proposing different metrics: Av-
erage packet-in requests, average packet-in requests per
switch, average packet-in response time, and entropy of
IP addresses and ports for source and destination.

• Comparing the effectiveness of a specific DDOS attack
creation on the data plane versus the control plane.

• Experimental results quantifying the proposed metrics’
effectiveness and impact on a DDOS attack on the data
plane.

The paper is organized as follows: Section II discusses
the related literature. Section III details the system’s method-
ology and experiment construction. Section IV presents the
emulation results, discusses limitations, and outlines future
directions in Section V. Finally, Section VI summarizes the
study and outlines the next steps.



II. RELATED WORK

Different security and cyber threat approaches exist for
SDN, including Kreutz et al. [10], considering seven different
threat vectors including three directly targeting the controller.
Moreover, other surveys [11], [12] list threats to SDN and con-
trollers, including unauthorized access with consequences for
the communication and integrity of messages [11]. Krishnan et
al. [12] especially point out the vulnerability of the southbound
interface impacting the integrity of the communications.

One of the most common threats for a controller is a Denial-
of-Service (DoS) attack. Abdullah et al. [13] evaluate the
performance of different controllers, namely Opendaylight,
POX, and RYU, against DoS attacks. The performance is
measured by the round trip time, latency, bandwidth, and
throughput, while the DoS attack is created using hping3.
The paper measures the effect of an DoS attack through
these metrics and concludes which controller application deals
best with such an attack, based on the implementation of
the controller. However, Abdullah et al. do not introduce any
countermeasures.

Using a NOX controller, Braga et al. [14] propose a
lightweight detection method for DoS attacks. They employ
Self Organizing Maps using six features to detect a DoS attack.
The main assumption of this study is that all switches keep
the statistics of all active flows. For SDTN, a test-bed and a
system named Cyber Security Simulation Service (CSSS) were
proposed in [15], trying to detect black hole attacks and react
by removing the black holes from the network. Black holes
are detected by monitoring bidirectional traffic. However, this
does not address the issue of attacks against the controller.

Similarly, Alharbi et al. [16] evaluate the impact of DoS
attacks in SDN on three different controllers, namely RYU
(version 3.22), ONOS (version 1.10.0) and Floodlight (version
1.0). Unlike Abdullah et al. [13], the attack is not created by
using hping3. Rather, they experimented with two different
methods. The first method crafts and sends UDP or TCP pack-
ets with random source, destination IP, and MAC addresses
using the Scapy library. With this approach, they archived
a packet-sending rate of 500 pkts/s. The second method is
TCPreplay, where previously captured traffic is injected into
the network at a desired rate, achieving a packet rate of 70.000
pkts/s. The authors first evaluated the impact of a DoS attack
on the controller measured by the Packet Delivery Ratio (PDR)
of 10 ICMP echoes between two hosts. They concluded that all
controllers could not respond after the attack rate reached over
7.000 pkts/s. These results are worsened by the network size
called the attack amplification effect. This is caused by one
packet triggering multiple packet-in requests from different
switches. The second experiment evaluates the impact of a
DoS attack on switches, concluding that the PDR drops to
0% if the attack rate is greater than 65.000 pkts/s. This paper
only compares controllers’ performance against DoS attacks.

The authors in [17] proposed SDN-Guard, an application
to protect the network against DoS attacks. This system is
plugged on top of the SDN controller and consists of three

components. The flow management component selects routing
paths and timeouts for flows. The rule aggregation component
aggregates similar flow table entries, while the monitoring
component collects statistics about flows, switches, and links.
A separate Intrusion Detection System evaluates the packet-in
requests. The DoS attack is created by using hping3 in partial-
mesh-switch-topology, using the Floodlight controller (version
1.2), and a total of up to 70.000 packet-in requests were
created. This approach heavily relies on an intrusion detection
system to analyze packet-in requests and to determine the
threat probability.

Different ideas for detecting an ongoing DoS attack have
been proposed. However, quite a few focus on the selection
of the classifier rather than the definition of features. Meti et al.
[18] evaluated three different classifiers for detecting DDOS
attacks. The Naive Bayes (NB) classifier, Support Vector
Machine (SVM) and Neural Network (NN) classifier were all
applied to real-world TCP traffic where the data consists of
the number of hosts connected in seconds, host time, which is
either the peak time or off-peak-time and a label for each entry.
They concluded that SVM is the best classifier for detecting
anomalies in an SDN network. In [19], the authors evaluated
seven different Machine Learning (ML) techniques without
specifying how their feature extractor works. The seven ML
techniques were both unsupervised and supervised, including
k-nearest Neighbour (kNN), NB, SVM, Random Forest (RF),
Artificial Neural Network (ANN), Linear Regression (LR) and
Decision Tree (DT). They noticed that LR achieved the highest
precision while RF was less precise but faster.

Other papers focus on features to detect a DoS attack. Yue
et al. [20] propose DoS detection based on flow table features.
These features include entropy of source IP addresses, similar-
ity of flow tables, growth rate of max matched packets and max
matched bytes, percentage of flows with a small number of
packets, and percentage of flows with short duration. All these
features were then used in different ML techniques, evaluating
their performance. Mousavi et al. [21] propose calculating
entropy within a given window. The entropy is calculated for
the destination IP address with a window size. Their proposed
method requires the definition of a threshold which, when
exceeded, indicates a DoS attack.

In this paper, we are tackling the challenge of tactical
networks with constrained links. This limitation it is harder
to launch a DDOS attack that overwhelms a controller and
forces a shutdown. However, DDOS attacks still impact the
network, especially the data plane, causing problems for other
users. We aim to develop a system deployed in a controller
that can detect ongoing DDOS attacks that impact the data
plane only using information that can be extracted from the
controller.

III. METHODOLOGY

Resilience in SDTNs refers to a controller’s ability to with-
stand and respond to attacks. Our strategy to attend resilience
comprises the design of a CDA capable of monitoring, featur-
ing engineering, detecting anomalies, and reacting. Besides, a
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Fig. 1: Network scenario.

CAA is proposed to create a successful attack, challenging
the CDA. Fig. 1 presents an illustrative network scenario,
including the essential components.

The network scenario represents a cluster of vehicles (V)
controlled by a command vehicle (CV) with an active con-
troller via 1Mbit SatCom links. Each vehicle has the minimum
node architecture of two local controllers (one is active to
control the cluster - e.g., command vehicle), tactical radios
(TRs), SDN switches, and hosts (H), where at least two hosts
(soldiers) are connected to its respective vehicle. The CDA is
an SDN app executed at the active controller aiming to protect
the network from cyberattacks. In contrast, the CAAs are
deployed randomly across the network topology to simulate
cyberattacks on the network to test its defenses.

As part of a common network scenario, user data traffic is
simulated to assess the impact on the proposed metrics used
by the CDA to identify a DDOS attack on the controller. It
uses TCPreplay to inject packets into the data plane. To ensure
that packet-in requests are generated, all packets have unique
IP, MAC addresses, and ports for both source and destination
hosts.

A. Cyber Attack Agent

We execute a DDOS attack by inundating the controller with
a massive influx of requests, slowing down the controller’s
response time and causing network communication delays. In
extreme cases, a large-scale DDOS attack can potentially over-
whelm the controller, leading to possible unresponsiveness. In
SDNs, control and user data are distinctly separated. Thus,
an attacker cannot directly, without extra access, send packets
to the controller and can only communicate with a switch.
The switch determines the subsequent actions for incoming
packets based on flow table entries installed by the controller.
These actions entail forwarding packets to the correct port
and recipient or discarding them. If no matching flow entry is
found, the switch redirects the packet to the controller, sending
a packet-in request with the reason NO MATCH. The controller
then endeavors to determine the routing path for the packet
and responds with a packet-out message, either containing the
appropriate flow entry or providing no specific instruction.
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Fig. 2: Cyber Defense and Attack agents design.

The CAA follows the three steps described in Fig. 2: the
preparation, the attack, and the evaluation. We employ two
approaches to execute a DDOS attack. In the first, originating
from the data plane, we leverage the SDN protocol, specifically
OpenFlow. This involves inducing the switch to inundate the
controller with a barrage of massive packet-in requests. In
the second approach, stemming from the control plane, we
presume that the attacker has compromised a switch and
exploits this access to orchestrate a DDOS attack without
altering the software. The minimum setup for a data plane
attack involves just one host connected to a switch, while
the control plane attack only requires a connected switch.
We assume a direct connection between the switch and the
controller. Additionally, our work builds upon the research
in [16], which previously demonstrated the effectiveness of
amplifying the attack through connected switches.

1) Data Plane: To force the switch to inundate the con-
troller with massive packet-in requests, the attacker must
send packets that cause a flow table miss in the switch. To
trigger a flow table miss in OpenFlow 1.3, the sent packet
requires an IP, MAC addresses, and ports for both source
and destination unknown to the switch. As Alharbi et al.
[16] already described, the Scapy Python library provides
tools to craft packets with unique IP, MAC addresses, and
ports for both source and destination and to send them at
varying speeds. TCPreplay is a suite of utilities that enables
the injection of previously captured packets into an interface at
varying speeds. In this setup, the data for TCPreplay is created
by Scapy.

2) Control Plane: A further approach is to take control of
the switch directly, which is a more challenging task compared
to the data plane approach. However, investigating the impact
of such a threat is still interesting, as this could be more
destructive than a simple data plane attack. Furthermore, we
assume that the attacker does not modify the software, as this
would lead to a further investigation of the vulnerabilities of
OpenFlow implementation instead of abusing the protocol. To
achieve this, we use TCPreplay to inject previously captured
packets on the switch interface towards the controller.



B. Cyber Defense Agent

The proposed CDA, shown in Fig. 2, is capable of monitor-
ing the SDN, employing metrics to detect potential anomalies
(DDOS attacks) and respond appropriately. We assume that the
controller has the required computing capabilities to collect
and inspect the network traffic. Notice that the controller
cannot access traffic information from the user network.
Therefore, we focus on metrics that can be extracted from
the controller, primarily based on sent and received packets.

1) Network Monitoring: After deploying the CDA on the
controller, the monitoring phase collects all relevant informa-
tion from the IP traffic using a packet sniffer that is designed
to instantly respond to the received packets. The packet sniffer
uses a Python extension module, Pcapy, that allows to access
the routines from the Pcap packet capture library within a
Python environment. We use Pcapy over other well-known
libraries for packet sniffing, such as Pyshark or Scapy, as
it provides the fastest processing of incoming packets. The
biggest drawback of Pyshark is that it buffers packets in such
a way that packets are still being processed even after the
communication is finished. This introduces a delay in pro-
cessing the data and responding to an attack, making this tool
unfeasible. Similarly, Scapy does not provide fast processing
of the captured packets, as stated in the documentation of the
library.

2) Feature Engineering: In sequence, the feature engineer-
ing processes and temporarily stores the logs to extract the
metrics described below. All proposed features can be used
either in a threshold-based detection system or in a machine
learning-based system. With this, we decouple the features
from the detection system, allowing us to test the effectiveness
of each component individually.

a) Entropy of packet-in requests: A well-known and
studied indicator for detecting DDOS attacks is calculating
the entropy of selected features. As features, we propose
calculating the entropy for IP addresses (IPsrc and IPdst) and
ports (Portsrc and Portdst) for source and destination on the
data plane level. Packets that cause a flow table miss result in a
packet-in request. This miss is most likely due to unknown IP
addresses and ports for source and destination, and these ad-
dresses vary heavily in an effective DDOS attack. The entropy
Hfeature is calculated using Shannon’s equation defined in (1)
where p(x) = {IPsrc, IPdst, Portsrc, Portdst,...} denotes the
relative occurrence of one of the specific features within a
specific time window.

Hfeature = −
∑

p(x)log(p(x)) (1)

b) Average number of packet-in requests: Pinavg is de-
termined by calculating the mean of requests over a specified
time interval, irrespective of their source. As defined in Equa-
tion (2), this calculation relies on the chosen monitoring time
interval. The interval must be long enough to provide a reliable
basis for monitoring the traffic (avoiding false positives) but
not too long, as the attack should be detected as early as
possible.

Algorithm 1 Anomaly detection mechanism

while True do
Repavg ← calculate average response time;
Pinavg ← calculate average number of packets;
Pktswitch ← average number of packets per switch;
Hfeature ← calculate entropies;
if Repavg + Pinavg +Hfeature > ATH then

Identify compromised switches(Pktswitch);
Deploy counter measurements;

repeat process;

Pinavg =

∑Nports
i=1 Number of packet-in on port i

Time interval
(2)

c) Average response time for packet-in requests: Repavg
is determined by examining each request and measuring the
time it takes to receive a response based on source, destination
port, and packet type, as shown in Equation (3). This calcula-
tion is performed for all packet-in requests, assuming that an
attacked controller would exhibit delayed responses. The to-
be-defined parameter is the window size in which the average
response time is to be calculated.

Repavg =

∑Nrequests
i=1 (request time i)− (response time i)

Time interval
(3)

d) Identification of compromised switches: Identifying
compromised switches is crucial in addressing a DDOS attack
within such a network. This identification is necessary either
when the switch itself is compromised or when compromised
hosts are connected to the switch, thereby indirectly compro-
mising it. Therefore, the system monitors all the packets per
switch in order to capture abnormal behaviors and be able
to trace the sources of attacks. We assume that a DDOS
attack will cause an increase of monitored packets of the
compromised switch as well as the neighboring switches. With
this, we can identify the area in the topology graph where the
attack is created. For equation (4), a time window needs to be
defined in which the packets per switch are to be calculated.

Pktswitch =

Time interval∑
i=1

i, i: Pkts to Controller (4)

3) Anomaly detection mechanism: The above-defined fea-
tures are part of the anomaly detection mechanism. These
features indicate an ongoing DDOS attack by either reaching a
pre-defined threshold (ATH ) or being used in a machine learn-
ing system. If a DDOS attack is detected, the compromised
switches need to be identified by evaluating the monitoring
results of the switches. The final step is an appropriate
response to the attack, such as blocking the compromised
ports, isolating the switches, or reassigning uncompromised
switches to a backup controller. This process is constantly
executed to ensure resilience, as shown in Algorithm 1.



4) The response mechanism: Once the features are estab-
lished, a response must be triggered and indicate an ongoing
attack. To do this, compromised switches must be identified
by evaluating the packet-in requests per switch. With this sep-
aration, different responses are possible. The most naive one is
to reassign the switches to a backup controller. However, this
can be very costly, and an alternative can be to block/timeout
the compromised switches.

IV. EVALUATION

A. General settings of the experiment

The experiment is conducted in a Mininet environment. The
network scenario is configured with ten switches (Vehicles),
each linked to 2 hosts (Soldiers) as shown in Fig. 1. All
vehicles are connected to the same controller (Command
Vehicle - CV) in a linear topology. As discussed earlier,
it is assumed that all vehicles are equipped with two local
controllers, but only the CV has an active controller managing
all vehicles. The controller is provided through a Ryu rest
API application. The connections between switches and hosts
are set to 2 Mbit/s with a delay of 2 seconds to simulate a
constraint link such as SatCom.

The traffic is generated using TCPreplay, injecting previ-
ously crafted packets into the network. The idea here is to
simulate normal traffic with some variation as expected in a
tactical network with nodes using different user applications
(Command and Control (C2)). The packets consist of TCP
and UDP packets with the following specifications for the
user traffic: 1) The IP addresses cover a range of 78 different
IPs, while the ports cover a range of 500 different numbers;
2) The MAC addresses are chosen arbitrarily as they do not
yield any useful information. This is due to the sheer range of
possibilities as well as the changing scenario, as there exists no
guarantee of a whitelist of MAC addresses; 3) Other protocols
can also be used, but the extracted features do not consider
different protocols apart from TCP and UDP.

Similarly, the attack traffic is created using TCP and UDP as
protocols, with the major difference being the bigger range of
IP addresses and ports used. In numbers, the range is doubled
compared to the user traffic, and it needs to be bigger, as an
attack that covers the same range would be ineffective. The
assumption is that the network should be built to manage the
planned traffic. Given this assumption, all switches will install
a correct flow table for all routes, thus reducing the frequency
of packet-in requests generated.

B. Comparison of data plane and control plane attack

To evaluate the efficacy of attacks from different planes in
SDNs, we conducted experiments creating DDOS attacks from
the data and control planes. In the former, we used one attacker
host and varied the number of switches in the network. To
evaluate the effectiveness of such an attack as well as confirm
the amplification effect, we measure the number of packet-in
requests. In the last, we assumed the attacker gains access to
the switch and injects packets through it, varying the number
of compromised switches in the network. A total of 1,000,000
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packets were injected, and the switches ranged from 2 to 16,
increasing by 2 in both experiments.

Fig. 3 compares the two methods within the same topology
based on eight runs to mitigate the variation capture in a single
execution. It is possible to observe the amplification effect
of the switches. As more switches are added, more packet-in
requests are generated as a switch forwards unknown packets
to its neighbor switches. This is explained by the fact that
those switches also do not have a corresponding flow table
entry; thereby, they all send a packet-in request. The second
observation is that a data plane attack is far more effective than
a control plane attack. For all experiments (2 to 16 switches),
we also noticed the number of successful packets (packet-in)
is considerably less than the total of packets injected. The
increase of packet-in requests in the data plane attack stagnates
after ten switches. This is due to the stress on the system. As
more hosts try to inject packets, the switches are overloaded,
and the total number of requests stagnates.

The reason for the worse performance on the control plane
is the encapsulation of the injected packet. As packets are
injected, the switch encapsulates them into an OpenFlow
packet, which is then sent to the controller even putting
multiple packets into one OpenFlow packet. To ensure a fair
comparison the total number of packet-in-requests is consid-
ered as the controller should process every packet-in request
similarly fast. This makes the switch the bottleneck of the
attack, and as the switch is not a powerful device, the attack is
not very effective. To make this type of attack more effective,
the attacker would have to circumvent the encapsulation by
changing the switch to be able to craft custom packets and
send them on a lower level. This comparison shows that an
DDOS attack from the data plane is far more effective than an
attack from the control plane. With less effort, the attacker can
cause more harm, as hosts are not as protected as switches.
Additionally, in a large network, the attacker profits from the
amplification effect of the other switches, while an attack
from the control plane requires more effort to generate more
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packets.

C. Evaluation of the features

For these evaluations, we compare the processed features
during normal user traffic and the attack traffic over time.
We start the experiment with an idle phase where only the
user data traffic is active, and after some time has passed,
the attack begins. For all features, we set the time window
to 20 seconds to observe the historical traffic and capture the
network behavior. After a wide exploration, this time interval
proved to be the most suitable as it is not too short to consider
isolated peaks, such as new additions of single nodes, and not
too large to miss abnormal traffic behavior.

1) Entropy: The entropy of the IP addresses and ports for
source and destination are depicted in Fig. 4. As noticed, the
results are similar for all four features, meaning that if an
attacker manipulates any of these features, the entropy can
still capture the anomaly. During the idle phase, the entropy
varies most frequently between 2 and 2.7, never reaching the
maximum of 3. On the other hand, during the attack phase,
the entropy varies between 2.5 and 3, with a tendency to 3.5.
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2) Average packet-in requests and response time: The result
of the avg number of packet-in requests depicted in Fig. 5 (top)
shows a clear difference between the idle and the attack phase.
Initially, the number of requests varies between 1000 and 3000
packets, followed by an increase to roughly 6000 requests
every 20 seconds. The average response time for packet-in
requests, Fig. 5 (bottom), depicts a similar behavior. Initially,
the response time is low, and it considerably increases once
the attack starts. For the first part, the response is immediate,
with a response time below 0.1 seconds. During the second
part, where the attack is running, the time increases to 0.6
seconds, averaging around 0.4 seconds. Furthermore, we can
see the correspondence of peaks occurred shortly after the
peaks of the average number of packet-in requests, as those
cause delays for the controller to respond.

All the features showed similar results with different
measurements. Thus, we can conclude that different met-
rics/features processed can be used as indicators of an attack.

3) Identification of compromised switches: The heat map in
Fig. 6 shows the calculated packet-in requests per switch. The
compromised hosts were selected arbitrarily as from the con-
troller’s perspective all hosts are the same. Noticeably, packets



are spread more evenly over the different switches during
the idle phase. No switch sends considerably more packets
than others. During the attack phase, some switches send
many more packets than others. Additionally, for neighboring
switches an increase in packet-in requests can be seen. With
this, we can identify the area in which the CAA is deployed.
Depending on the difference between the peak of packet-in
requests of a switch and the number of those requests for
the neighboring switches, we can conclude if the attacker is
connected to multiple switches or whether the amplification
effect occurs. The difference between peak and neighboring
switches is smaller if the CAA is connected to multiple
switches as packet-in requests are more frequently generated
by direct connections to hosts than through other switches.
With this approach, we can identify compromised switches
and use this information for the appropriate response.

V. LIMITATIONS AND THE WAY FORWARD

In this section, we discuss the limitations faced in this study
and the ways to move forward.

A. Virtual machine and Mininet environment

The first aspect that requires further discussion is the virtual
machine and the Mininet environment. Currently, we consider
the numbers to be distorted due to the hardware limitations
of the virtual machine. However, as all experiments were run
on the same machine, this distortion can be disregarded. Fur-
thermore, we need to consider the limitations of the Mininet
environment, which can be seen in the different values of the
experiments. This means that the same experiment can be
run twice and can have two different results concerning the
concrete numbers. In certain cases, there is a considerably high
differentiation between the results. This especially holds for
switches, as those easily prove to be bottlenecks. However, the
general picture stays the same. This can be seen, for example,
with the average number of packet-in requests for a given
time interval. The average in the different phases can differ
up to 1000 packets. Nevertheless, a clear difference between
the phases in the same experiment can be observed.

1) Way forward: Solving these limitations proves to be
hard, as an improvement of the virtual machine means an
upgrade of hardware, and Mininet itself is a working system
and, therefore, hard to improve. The most sensible approach
is to ensure that the applications used and the experiment’s
settings are not too costly for the system.

B. Defensive mechanism

Another limitation is the defensive mechanism itself. At the
moment, static thresholds dictate whether or not the response
will be triggered. This makes deploying the mechanism in
different scenarios problematic, as the thresholds heavily de-
pend on the attacker’s size and the normal network traffic.
Furthermore, the defensive mechanism only uses two metrics,
which can cause trouble if the scenario is dynamic with new
hosts added, resulting in more packet-in requests. Moreover,
the mechanism only provides a single response switching to a

backup controller. This has been made without any drawbacks,
not necessarily reflecting real-world scenarios. Drawbacks
include a slower or more error-prone connection and a backup
controller with less computing power. Finally, the defensive
mechanism is only tailored to one kind of attack. However,
other attacks are also possible.

1) Way forward: An improvement for the defensive system
is to deploy a dynamic system. This includes the use of
machine learning to distinguish normal traffic from an attack.
To use a more dynamic approach, an appropriate model must
be introduced to detect an ongoing DDOS attack utilizing
the detection features and the identification of compromised
switches. Different responses need to be explored for an
effective system before triggering a backup controller. Other
options include finding the CAA or blocking compromised
switches.

VI. CONCLUSION

In this study, we proposed a CAA and a CDA, which act in a
SDTN. The CAA simulates a DDOS attack on the controller,
where the controller is flooded with packet-in requests. The
CAA consists of three steps: the preparation by crafting
packets, injecting these packets, and finally evaluating the
attack’s success. The CDA consists of four steps: monitoring,
feature engineering, anomaly detection, and response. The
mechanism to detect an ongoing attack uses four processed
features: the average number of packet-in requests, the average
response time to packet-in requests, the entropy of IP addresses
and port for source and destination, as well as monitoring the
packet-in requests per switch. If the first three features indicate
an ongoing DDOS attack, the compromised switches are
identified by the heatmap of the number of sent packets. The
final step is an appropriate response, including blocking the
compromised switch ports or switching to a backup controller.

We evaluated two types of attack approaches, either a con-
trol plane or a data plane attack, concluding that a data plane
attack is far more effective as it profits from large networks
through the amplification effect and provides easier access to
the network. All the features proved to be good indicators
of an ongoing DDOS attack. Furthermore, the monitoring of
packets per switch helps to identify compromised switches.
Future work includes implementing a machine learning system
that uses the defined features to decide which responses are
more appropriate.
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