FRAUNHOFER FKIE & THALES DEUTSCHLAND DEPT. OF COMMUNICATION SYSTEMS & THALES SIX

Research Group: Robust Heterogeneous Networks

TOWARDS A CYBER DEFENSE SYSTEM IN SOFTWARE-DEFINED TACTICAL NETWORKS

Sean Kloth, Paulo H. L. Rettore, Philipp Zißner, Bruno P. Santos, and Peter Sevenich

Agenda

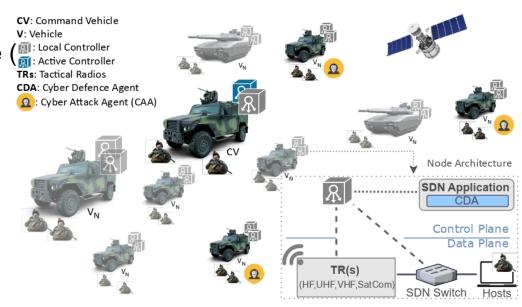
- Background
 - Motivation
 - Problem Definition & Proposed Solution
- Methodology
 - Cyber Attack Agent (CAA)
 - Cyber Defence Agent (CDA)
- Evaluation
- Limitations
- Conclusion

Background – Motivation

- Tactical Networks (TNs) face challenges due to the heterogeneous communications, limited radio links, mobility, and cybersecurity threats
- Software-defined Networks
 - potential to host mechanisms to control the network, reducing cost and management overhead
- However, standard SDN protocols, like Open-Flow, were designed for:
 - **non-mobile**, **reliable**, **high-speed**, and **low-latency** networks

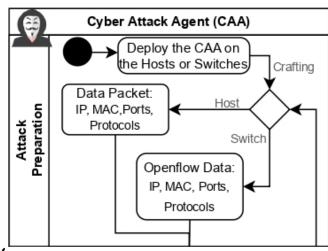
Background – Problem Definition

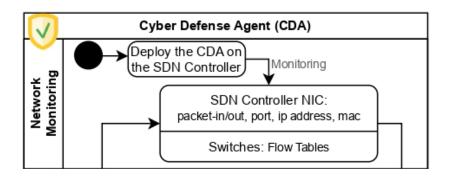
- How does SDN, OpenFlow deal with Distributed-Denial-of-Service-attacks (DDOS) in Tactical Networks?
- Which problems do Tactical Networks introduce to a DDOS attack?
- How can we detect an attack early?
- Which countermeasures can be taken?


Background – Proposed Solution

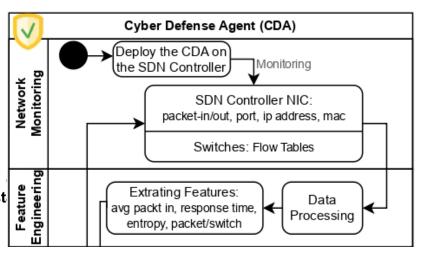
- Resilient Controller
 - → Introduce a system to **detect** and **react** to a DDOS attack
 - Cyber Attack Agent (CA/
 - Creates DDOS attack challenging CDA
 - Data plane and Control plane
 - Cyber Defence Agent (CD. V
 - Monitor and detect attacks through features
 - React to attack

Methodolgy


- Resilient Controller: Ability to with-stand and respond to attacks
- Network scenario:
 - Cluster of vehicles (V) controlled by command vehicle
 - Active connection via 2MBit SatCom links with latency of 2 seconds
 - Each vehicle minimum of two local controllers
 - With at least two connected hosts
 - CDA executed in active controller
 - CAA deployed randomly across the network topology

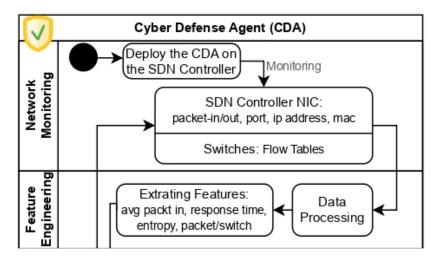

Methodolgy – Cyber Attack Agent (CAA)

- Create a DDOS attack by flooding the controller with packet-in requests
 - Craft packets that force a miss, causing controller to respond
 - Packet-in requests only packets sent to controller
- Data Plane:
 - Force switch to send packet-in requests by modifying IP, MAC addresses and ports for source and destination
- Control Plane:
 - Sent packet-in requests directly from a switch

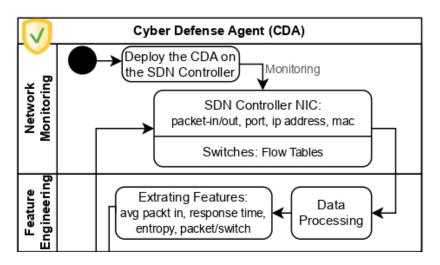


Methodolgy – Cyber Defence Agent (CDA)

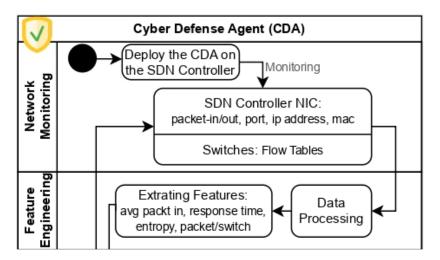
- Monitor incoming traffic:
 - Collect all relevant information from the IP traffic using a packet sniffer
 - Process information as fast as possible



- Collect features:
 - Entropy:
 - IP address, ports for source and destination
 - $H(x) = -\sum p(x) \log(p(x)), p(x) = \{IP_{\text{src/dest}}, Port_{\text{src/dest}}\}$

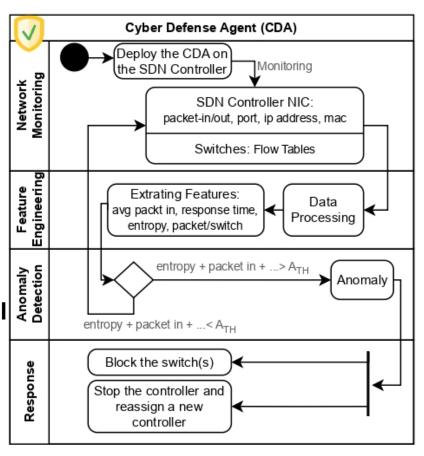

- Collect features:
 - Entropy
 - Average number of packet-in requests:

Pin_{avg} =
$$\frac{\sum_{i=1}^{Number\ of\ ports} Number\ of\ packet-in\ on\ port\ i}{Time\ interval}$$



- Collect features:
 - Entropy
 - Average number of packet-in requests
 - Average response time:

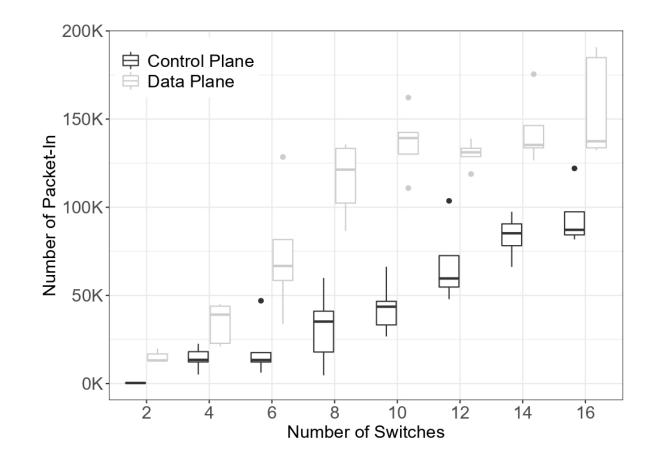
$$\mathsf{Rep}_{\mathsf{avg}} = \frac{\sum_{i=1}^{Number\ of\ requests} (request\ time\ i) - (response\ time\ i)}{\mathit{Time\ interval}}$$



- Collect features:
 - Entropy
 - Average number of packet-in requests
 - Average response time
 - Identification of compromised switches:
 - Pkt_{switch} = $\sum_{i=1}^{Time\ interval} i$, i: $Pkts\ to\ Controller$

- **Detect** anomalies:
 - Use features and define threshold
 - **Alternative**: Use machine learning model
- React:
 - **Block** compromised switch(es)
 - Block compromised switch(es)

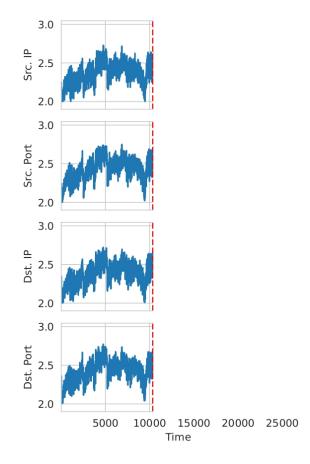
 Reassign non-compromised switches to backup control


Evaluation – General Settings

- Topology:
 - 10 vehicles, with each 2 Soldiers
 - **Linear** connection between vehicles
 - Controller: Ryu
 - Traffic: TCPreplay, with UDP and TCP
- Connections:
 - Vehicles Soldiers : 2MBit/s, delay 2 seconds
 - Vehicle Vehicle: 2MBit/s, delay 2 seconds

Evaluation – Data Plane vs. Control Plane

- Inject a total of 1.000.000 packets, compare resulting packet-in requests
- Control Plane:
 - Performs worse due to encapsulation
- Data Plane:
 - Amplification effect observable
 - Conversion of packets higher
- Compromising hosts is sufficient

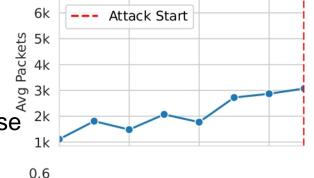

Evaluation – Features

Entropy:

Idle: 2-2.7

Attack: 2.5-3, trending towards 3.5

Clear difference between Idle and Attack phase


Evaluation – Features

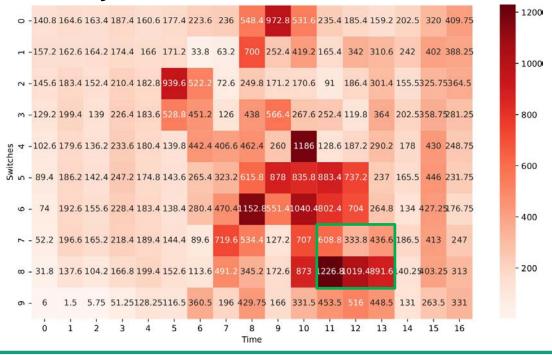
Average packet-in requests:

Idle: 1000 and 3000

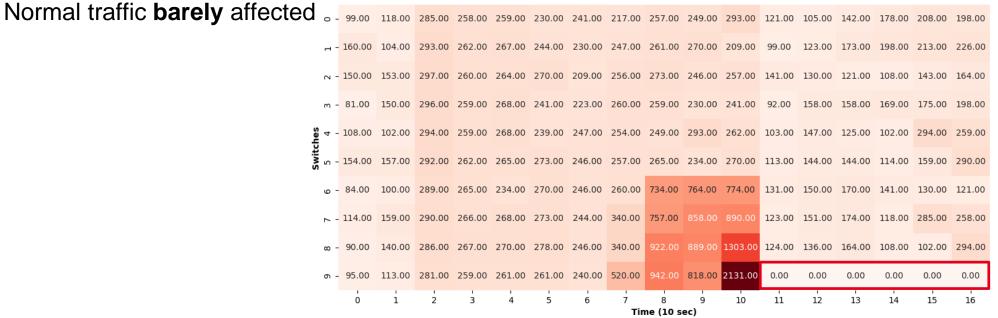
Attack: 6000

Clear difference between Idle and Attack phase

- Average response time:
- erage response time:


 Idle: Response almost immediate, 0.1 seconds
 - Attack: increase of 0.6, with average of 0.4
 - Clear difference between Idle and Attack phase 10 Time

14


Evaluation – Features

- Identification of compromised switches:
 - During the idle phase, all switches show similar behaviour
 - During the attack, compromised switches send drastically more
 - Neighbouring switches send more
 - Amplification effect

Evaluation – Response Mechanism

- **Block** compromised switch
 - **Keep** network structure
 - **Remove** switch/**install** flow table entry **dropping** every packet

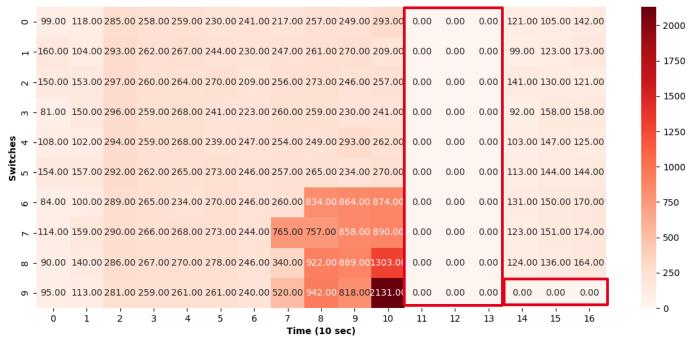
- 2000

1750

1500

- 1250

- 1000


- 750

- 500

- 250

Evaluation – Response Mechanism

- Replace controller
 - Rebuild network with only uncompromised switches and backup controller
 - Compromised switches connected to old controller
 - All communication is interrupted

Limitations

- Virtual machine and Mininet environment:
 - Hardware limitations cause distortion
 - Switches are bottlenecks
- Defensive mechanism:
 - Requires threshold

Conclusion

- Threshold-based detection
 - Can detect DDOS
 - Two different reactions: **block** port, **replace** controller
 - **Too** domain specific

- Future Work:
 - Machine Learning based approach

Thank you for your attention!

