
eXtend Collection Tree Protocol

Bruno P. Santos and Marcos A. M. Vieira, and Luiz F. M. Vieira

Computer Science Department

Universidade Federal de Minas Gerais, Brazil

Email: {bruno.ps,mmvieira,lfvieira}@dcc.ufmg.br

Abstract—In this work, we propose eXtend Collection Tree
Protocol (XCTP), a routing protocol that is an extension of the
Collection Tree Protocol (CTP). CTP is the de-facto standard
collection routing protocol for Wireless Sensor Network (WSN).
CTP creates a routing tree to transfer data from one or more
sensors to a root (sink) node. But, CTP does not create the
reverse path between the root node and sensors. This reverse
path is important, for example, for feedback commands or
acknowledgment packets. XCTP enables communication in both
ways: sink to node and node to sink. XCTP accomplishes this task
by exploring the CTP control plane packets. XCTP requires low
storage states and very low additional overhead in packets. With
the reverse path, it is possible to implement reliable transport
layer protocols for Wireless Sensor Network (WSN). Thus, we
designed Transport Automatic Piggyback Protocol (TAP2), a
transport protocol with Automatic Repeat-reQuest (ARQ) error-
control on top of XCTP. We implemented these protocols on
TinyOS and evaluated on TOSSIM. We compared XCTP with
CTP, Routing Protocol for low-power and lossy networks (RPL),
and Ad hoc On Demand Distance Vector (AODV) protocols.
We conducted scalability and stress tests, evaluating them with
different loads and number of nodes. Our results shows that
XCTP is more reliable then CTP, delivering 100% of the packets.
XCTP sends fewer control packets than RPL. XCTP is faster to
recovery from network failures and also stores fewer states than
AODV, thus being efficient and agile.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of a large

number of nodes with sensing, computation, and wireless

communication capability. These networks have computing

and communication energy constraints. Many applications in

WSN need to transport large amount of data (image, audio,

video monitoring). These applications are not tolerant to data

loss, thus it is important to provide mechanisms to reliable

collect data.

The WSNs have the following communication paradigms:

many-to-one (data collection), one-to-many (data dissemina-

tion), and a more complex way that enables communication

any-to-any. First two paradigms allow the collection and

dissemination of data respectively. However, with routing on

only one direction, it is infeasible to build reliable mecha-

nisms to ensure the delivery of data end-to-end. Any-to-any

communication paradigm allows communication between any

pair of nodes in the network, but adds more complexity and

also requires large amounts of memory to store all possible

routes

In this work, we present eXtend Collection Tree Protocol

(XCTP), a routing protocol that is an extension of the Col-

lection Tree Protocol (CTP). CTP creates a routing tree to

transfer data from one or more sensors to a root (sink) node.

But, CTP does not create the reverse path between the root

node and sensors. This reverse path is important, for example,

for feedback commands or acknowledgment packets. XCTP

enables communication in both ways: sink to node and node

to sink. XCTP requires low storage of states and very low

additional overhead in packets.

Our main contribution are as follows:

• We propose eXtend Collection Tree Protocol (XCTP),

which allows routing of messages in the reverse direction

of CTP, using a few extra memory to store reverse routes.

• We compare the performance of XCTP, Ad hoc On

Demand Distance Vector (AODV), Routing Protocol for

low-power and lossy networks (RPL), and CTP. In the

experiments, XCTP proved to be more reliable, efficient,

agile, and robust.

• We show that it is possible to implement reliable data

transport protocol over XCTP.

CTP optimizes data traffic towards the root thus achieves

high packet delivery rate. However, our XCTP approach goes

beyond, allowing bi-directional communication between sen-

sor nodes and the root. XCTP and any-to-any routing protocols

enable reliable communication. However, XCTP reduces the

cost to store routes, since XCTP does not need to maintain

routes to every peer.

Our work is organized as follows. In the next section, we

present work related to XCTP. In Section III, we formally

define the problem being solved in this work. We describe

XCTP architecture in Section IV. We compare XCTP with

AODV, CTP and present the simulation results in Section-

sec:evaluation. Finally, we conclude in Section VI.

II. RELATED WORK

Table I
COMPARISON OF COMMUNICATION PARADIGMS.

Dissemination Collection Any-to-Any

Unreliable Unreliable Reliable Reliable

Directed Diffusion[8] CTP[7] AODV[15], DYMO[2], DSR[9]

(DIP, DRIP, DHV)[12] MultiHopLQI[3] Hydro[5]

Deluge [4] MintRoute[19]

XCTP

RPL [18]

We present in Table I the main related protocols. We

classified them according to the communication paradigm

(any-to-any, many-to-one, one-to-many). Table I shows that

XCTP is, to the best of our knowledge, the only Reliable

Collection protocol. In other words, it is a data collection



protocol that also allows unicast routes root-to-node. Besides

that, it offers an interface that facilitates the development of

reliable end-to-end transport protocols.

From the protocols presented in Table I, Directed

Diffusion[8], (DIP, DRIP, DHV)[12] are used for dissemina-

tion of small data packets in the network. DIP, DRIP, DHV

offers eventual consistency models and use timers based on

Trickle[13]. DRIP treats each information as a separated entity,

which allows more control of when and how fast the data will

be disseminated. DIP and DHV treat data as a group, meaning

that control and dissemination parameters are applied equally

for all data.

CTP and Deluge are related protocols. CTP is a data

collection protocol that uses Expected Transmissions (ETX)

metric to estimate the link quality and route cost. Data and

control packets are used to obtain the link quality. XCTP is

an extension of the CTP protocol. Besides creating unicast

routes to a data collection point, XCTP also creates unicast

routes from the root to the sensors. Deluge is a protocol

that operates under the one-to-many paradigm, which has the

objective to propagate large amount of data, as is the case,

when reprogramming the network nodes.

Hydro [5] and RPL [18] are protocols that aim at main-

taining any-to-any communication in WSN. Hydro differs

from our approach, which focus in creating unicast routes to

exchange messages in both directions root-to-node and vice-

versa. Routing Protocol for low-power and lossy networks

(RPL) disseminates Destination Advertisement Object (DAO)

messages to announce routes for each destination. While RPL

requires control packets to create downward routes, XCTP

does not have this overhead since XCTP takes advantage of the

data packets. XCTP also allows non utilized downward routes

to be removed through TTL-based policy, avoiding memory

overhead to store states with peer-to-peer routes that are under-

utilized in WSN.

AODV [15] and Dynamic Source Routing (DSR) [9] are

on-demand routing protocols for any-to-any communication.

AODV floods the network with messages RREQ to build a

path till the destination. On the other hand, DSR protocol uses

the packet header to store the route path. Unlike DSR, our

protocol does not store any routing information in the packet

header. AODV protocol has some similarity with XCTP in the

strategy of storing the reverse path. However XCTP, unlike

AODV, does not save routes that are not reverse among the

sensor nodes and the base station. Dymo [2] is the AODV

successor, however it is optimized for MANETs.

None of the protocols here related allow sending unicast

messages in root-to-node direction and vice versa, except those

any-to-any protocols that require large amount of information

to be stored or control messages.

III. PROBLEM

The data delivery reliability is one of the most challenging

problems in WSN, due to frequent link instability in fractions

of a seconds, many times in less than 1s[16]. Therefore,

it brings basic requirements that are fundamental for any

routing protocol for low-power and lossy networks (L2Ns):

1) reliability, it should deliver the largest possible amount

of packets, when there is route between the participants

communication; 2) robustness, the protocol should operate in

different topologies, loads, amount of sensor nodes and in the

presence of failures; 3) efficiency, the protocol must deliver

packets with the least amount of transmissions, save energy

and keep the least amount of possible states.

An alternative to collecting data in a reliable, robust and

efficiently mode is using XCTP. This protocol balances the

compromises imposed by the three fundamental goals of WSN.

XCTP adjusts the communication model for data collection

to provide routes that enable feedback commands, confirma-

tion messages or control messages to be exchanged in bi-

directional form between any sensor node and the base station.

XCTP allows data transport protocols with confirmation be

built. Thus, XCTP enables reliable data deliver.

IV. SOLUTION

A. XCTP Architecture

Here, we describe XCTP architecture. To accomplish the

task of forwarding packets also in the reverse direction of the

standard CTP data flow, we had to modify CTP architecture

by adding new features to the protocol rules as well as

incrementing the packet format. We did a minor modification

in the data packet by adding a new field. We also created a

reverse flow table. The protocol rules were modified at the

control and data planes. The data plane was changed to query

the reverse flow table. The control plane is responsible for the

construction and modification of this table. The control plane

was modified to manipulate the reverse fluxes and also to react

appropriately to the two main events:

1) Reverse flow: correct and efficient installation of the

reverse flow rules;

2) Topological changes: nodes must appropriately react

when loops occur or when CTP unicast routes change.

In Figure 1, we show the relationships between modules.

Major changes are highlighted in gray. The Router module is

responsible for filling the Forward and Reverse tables. These

tables indicate what is the next hop for the data packet to be

transmitted. We did not modify the Link Estimator module.

This module estimates the quality of the links to the neighbor-

ing nodes. The quality of the links are estimated using beacons

and data packets. The Forward module queries the Forward

and Reverse tables, and determines any router inconsistencies

to inform the Router module. It also keeps a packet queue for

transmission and check for duplicate packets. The Link Layer

module contains the features used in radio communication.

Finally, the Upper Layer module is the interface provided to

implement components that utilizes XCTP.

B. Changes in data packet

To allow the navigation of the reverse data packet, we added

a 16 bits packet field to the data packet to represent the address

of the message destination. Figure 2(a) shows the new data

packet format. The packet fields are: P allows node to request



Figure 1. XCTP architecture.

routing information to other nodes; C indicates congestion

notification; Time Has Live (THL) each node, when receiving

a packet, increments this field; ETX routing metric for routes

construction and loop detection; origin address of the source

node; destination address of the destination node; seq. num.

sequence number; collect ID collection tree identifier; Payload

packet data content.

We also created an Acknowledgment (ACK) packet. The

ACK packet has a subset of the data packet fields, as illustrated

in Figure 2(b). The New Features field 16 bits is reserved for

future features. The ACK packet is useful as acknowledgment

message for end-to-end transport protocols implemented over

XCTP.

(a) Data packet with new desti-
nation address field.

(b) Acknowledgment Packet.

Figure 2. Packet formats for XCTP protocol.

C. Reverse Flow

The control plane is responsible for the manipulation of the

XCTP reverse table. The reverse table has the following fields:

addr dest: XCTP tree descendent (but not 1-hop neighbor);

next hop: neighbor address to reach destination; TTL: route

time to live, where we can apply removing policies. The

Router module implements the basic operations Creation,

Read, Update, and Delete over the reverse table.

1) Creation: The table starts empty. When a sensor node

forwards a message to the root, the reverse route is installed.

Since the link estimator module stores information about the

1-hop node neighbors, the router module does not insert

entries in the reverse table of 1-hop neighbors. Figure 3(a)

illustrates this situation: where node C sends data to the root,

the intermediate node (that is not a 1-hop neighbor of node

C) intercepts the packet from source C and install a reverse

flow.

2) Read: Router module provides an interface to query the

table. This mechanism is used for data and control planes. In

Section IV-E, we provide details of using this interface.

3) Update e Delete: Router module provides mechanisms

for updating and removing installed rules. These functions are

called when there is a topology change (see Section IV-D).

There is a trade-off between agility and efficiency regarding

the maintenance of routes in L2Ns. Agility refers to how

fast the network can react to a topological change, while

efficiency is the energy consumption and the number of

packets sent to keep the network operational. The network

requires high frequency of the beacons to keep routes updated.

This increases the agility of the network but, on the the hand,

it reduces efficiency. CTP uses the Trickle algorithm [13] to

increase the number of beacons when the network is unstable

and exponentially reduces the number of beacons when the

network is stable, thus keeping a tradeoff balance between

speed and efficiency. XCTP uses the data packets to create

the reverse route, thus, there is no need for extra beacons.

D. Topology Changes

A routing system must know when and where to change

the reverse routes of the data plane so it can correctly react

to the network topology dynamics. XCTP control plane reacts

and changes the data plane for reverse routes when there is

the occurrence of loops or link failures.

To maintain the consistency of routes, each sensor node

keeps the estimated route cost to the base station. Moreover,

this information is attached to the control and data packets (see

Figure 2(a)). XCTP uses ETX as the metric cost. The route

cost is always increasing towards the leaf nodes of the routing

tree and this invariant must always be maintained. Loops are

detected when this invariant is broken. In this case, the reverse

flow table entry is removed.

Figures 3(a) and 3(b) illustrate this situation. In Figure 3(a),

we show the initial flow table. Then, as shown in Figure 3(b),

there is a link failure which causes a loop between nodes A,

B, and D. In the event of a loop, the data plane marks, in

the reverse flow table, the sensor nodes that were descendants

and now are parents in the routing tree. Therefore, the action

taken when loops are detected by XCTP data plane is to signal

the control plane for the loop detection so that the appropriate

reverse flow table entries are cleared. The reverse flow entries

are reconstructed when there are new data packets in the

network.

In case of link exchanges due to the dynamics of link

quality, the control plane must update the data plane reverse

flow entries to reflect this new routing tree configuration. The

reverse flow table is updated when a data packet from an

already installed flow is intercepted but it was routed through

a different neighbor. Figures 3(c) and 3(d) illustrate this case.

Data packets from node D towards the root was forwarded

by node B and changed to be forwarded by node C due to

changes in link quality. Thus, the data plane of node A must

be updated to reflect this new configuration: the reverse flow

should be forwarded by node C.

E. API

Here, we describe the XCTP Application Programming In-

terface (API). The CTP protocol does not require a destination



(a) XCTP routing tree with
reverse flow table.

(b) Reverse flow table is out-
dated due to routing loop.

(c) Reverse flow table before
link update.

(d) Updating reverse flow rule.

Figure 3. Control plane reactions over the data plane rules when detecting a routing loop and updating the routing paths.

address. XCTP, on the other hand, needs a destination address

to provide unicast routing to a specific sensor node. XCTP

integrates an interface that includes the destination address

as well as routines for handling and the reverse and forward

tables. The routines are:

• addr sendTo(target, pkt): where target is the destination

address of XCTP pkt packet.

• addr nextHop(target): where target is an optional pa-

rameter. If target is instantiated, nextHop(target) routine

queries the Reverse Table, otherwise the message is

towards the base station.

• loopDetect(): this routine signals the control plane when

a loop is detected (see Section IV-D).

• snoopNewPkt(pkt): when intercepting a data packet

from a new flow, the control plane must signal to update

the reverse and forward tables.

Thus, the interface sendTo(idNode,pkt) should be used when

the base station needs to send a packet to a specific node.

Algorithm 1 describes this routine. On line 1, we check

if it is a data or acknowledgment packet because only these

two packet types should travel on the reverse path. Then, the

destination address is extracted. If the destination is the node

itself (line 2), the packet has reached its destination and it

should be properly processed. If the destination is one of its

descendants (line 4), the packet is forwarded. Otherwise the

recipient is not in any of the routing tables. In this case, there

are two approaches: discard the packet or forward the packet

to the root (line 7). In the second case, since the root knows

the entire network topology, the root can forward the packet

or just discard it. If the packet does not have a valid address,

XCTP routes the messages directly to the root (lines 10-12).

XCTP permits the any-to-any communication paradigm.

This is possible due to how the the reverse route is constructed

(line 7 of Algorithm 1). If a node X wants to directly connected

to a node Y, node X can use the routine sendTo(Y, pkt). Node

Y will receive the message from an ancestral of node X or, in

the worst case, the message will go to the root and towards

node Y.

F. Transport layer over XCTP

Using XCTP API, we implemented a reliable transport pro-

tocol, called Transport Automatic Piggyback Protocol (TAP2).

TAP2 uses piggyback and Automatic Repeat-reQuest (ARQ)

Algorithm 1 Internal operation sendTo() interface.

1: if isDataXCTP (pkt) or isAckXCTP (pkt) then

2: if pkt.destination = my.addr then

3: // Process package locally.

4: else if pkt.nextHop = nextHop(pkt.dest) then

5: // Send unicast message to neighbor in reverse flow.

6: else

7: // Drop pkt or forwards to the root.

8: end if

9: else

10: // Normally forwards packets through tree XCTP.

11: pkt.nextHop = nexHop()

12: forward(pkt)

13: end if

error-control mechanism for packet retransmission. Other

transport protocols for WSN such as [14], [10], [17] can also

be implemented over XCTP. However, the requirement of a

few computing resources and its simplistic implementation

were reasons why we chose this approach in our work.

V. EVALUATION

In this section we analyze XCTP and compare it with

three protocols: CTP, RPL, and AODV. The objective of this

analysis is to show that the protocol is working properly, as

well as to evaluate XCTP performance when compared with

the current state-of-the-art protocols. We analyzed according

to the following items: 1) favoring the construction of data

transport protocols; 2) robustness in the presence of faults in

different topologies; 3) scalability. 4) control traffic.

A. Simulation

Of the protocols shown in Table I, Directed Diffusion [8],

Deluge [4], (DIP, DRIP, DHV) [12] are used just for data

dissemination in the network and do not serve to compared

with XCTP. Collection Tree Protocol (CTP) [7] is one of

the newest protocols and it presents better results than Mul-

tiHopLQI [3] and MintRoute [19] in data collection. To the

best of our knowledge, there are no stable and open source

implementations to the community of protocols Dymo [2],

DSR [9] and Hydro [5]. Therefore, we made comparisons with

RPL [18], AODV [15], and CTP.



XCTP, CTP, and AODV protocols were implemented in the

TinyOS [12]. We adopted RPL Contiki [6] implementation. We

also performed experiments with Tymo, a TinyOS version of

protocol Dymo. However, Tymo implementation did not show

to be stable as reported in [1].

We run the experiments on the simulator for L2Ns

TOSSIM [11]. We consider the base station to be a PC without

memory restrictions and which can hold information about the

entire network topology. we used the LinkLayerModel tool

from TinyOS to generate the topology and connectivity model.

Table II presents the default simulation parameters.

Table II
SIMULATION PARAMETERS

Parameter Value

Root 1 center
Number of sensors 100
Radio range 100m
Density 10 sensors/m2

Number of flows 1

Bytes transmitted 1024B
Path Loss Exponent 4.7
Power decay (dB) 55.4
Shadowing Standard Deviation (dB) 3.2

B. Simulation Results

Figure 4 shows the percentage of delivery of a file of size

512KB sent from the root to a sensor node 5 hops away.

XCTP+TAP2, AODV+TAP2, and RPL+TAP2 reach 100% of

data delivery, because they allow feedbacks to be sent from

data received between the two involved in the communication.

We observed that CTP can transfer only 96.5% of the 512KB,

because it is not possible to request lost data or confirm

received messages, since there are routes only towards the

root. The impossibility of requesting the remaining fragments

results in malfunctioning the application that is intolerant

to data loss. We conclude that XCTP and AODV favor the

development of data transport protocols, providing routes that

allow feedback messages to be exchanged among sensor nodes

and the base station.

Figure 4. Transferring a 512KB file to a sensor node 5 hops away from the
base station.

1) Robustness: To evaluate XCTP in terms of robustness,

we elaborated experiments with different amounts of active

flows (nodes transmitting data to root) and inserted network

failures.

Initially we compared XCTP and AODV with respect to the

reaction in the presence of network failures. In this scenario,

5 sensor nodes transfer, each one, 1KB of data to root

reliably and after 6s from the beginning of transmission we

disable 25% of the network, without creating disconnected

components in the network. Figure 5(a) shows in y-axis the

percentage of flows that have completed the transfer of 1KB

of data, the x-axis shows the elapsed time. In the first seconds

of the simulation the two approaches are similar, being XCTP

a little faster due to proactive construction of routes. After

the shutdown of part of the network at 6s, XCTP reacts

quickly finding new routes to the root, the 5 sensor nodes

operating with the protocol XCTP complete the transfer in

approximately 18s. The protocol AODV reacts slowly to

topological change. In this simulation scenario, AODV took

over 360s to complete the data transfer.

(a) Protocol reactions XCTP and
AODV in the occurrence of network
failures.

(b) XCTP reaction in the presence
of failures. 75 flows are active, each
sending 1KB.

Figure 5. Experiments on the robustness of the XCTP and AODV protocols.

The experiment #2 has 75 active flows with the root. After

20s, we shut down 25% of the nodes. Figure 5(b) shows the

percentage of sensor nodes that concluded the data transfer

per time. XCTP, even after the partial shutdown, quickly

rebuild routes to the root and continues to transfer data. With

3 minutes of simulation, all nodes end the data transfer. This

shows that XCTP is agile even in presence of faults and with

many concurrent flows in the network. AODV is not shown in

Figure 5(b) because it can not operate with more than 5 flows.

2) Scalability: To show that XCTP is scalable, we com-

pared the size of XCTP, AODV, and RPL routing table. We

did not compare with CTP because CTP table has constant

size and stores only the next hop towards the root. Figure

6(a) shows the comparison between XCTP, AODV and RPL

in the use of routing tables varying the number of flows. We

notice that with 5 flows AODV consume 100% of the routing

table. When many flows coexist and the routing table is full,

AODV is obliged to dismiss requests for new routes. Thus,

AODV needs to wait for timeouts from old routes to expire so

that new routes are installed, resulting in high reaction time

for network fault and it prevents higher number of concurrent

flows. Unlike AODV, XCTP consumes approximately 83%
less from the table than AODV for the same amount of flows.

RPL always installs all possible reverse routes, independent

of traffic demand. Some intermediate nodes will not be able

to store all downward routes, thus, causing disconnection

between some routes. Unlike RPL, XCTP attempts solve this

problem with TTL-based policy over under-utilized routes.

Figure 6(b) shows that XCTP is robust and scalable. XCTP



operates under the Reverse Table limit for different number

of concurrent flows, with different topologies and amounts of

sensor nodes in the network.

(a) Memory consumption of the
routing table per number of flows for
the XCTP, RPL and AODV proto-
cols.

(b) XCTP Reverse table use by vary-
ing the number of flows and sensor
nodes in the network.

Figure 6. Scalability experiments for XCTP and AODV.

3) Control Traffic Overhead: Figure 7 presents the control

traffic from six-hours experiments. XCTP and RPL control

traffic are high at network start up, but they decrease and

stabilize over time. XCTP sends fewer control packet than

RPL because XCTP does not send additional beacons to build

reverse routes.

Figure 7. XCTP requires fewer control packets than RPL.

4) Memory Consumption: Table III presents the RAM and

ROM footprint sizes of the components in our protocol stack

with and without TAP2. XCTP adds little more than 1KB of

code to CTP, requiring smaller amounts of RAM than when

compared with AODV. Regarding the protocols in conjunction

with TAP2, XCTP consumes less RAM than AODV.

Table III
CODE AND MEMORY FOOTPRINT IN BYTES.

CTP XCTP XCTP+TAP2 AODV AODV+TAP2

RAM 1505 1812 1968 2119 2545

ROM 16204 17942 18435 13868 14562

VI. CONCLUSION

In this work, we present XCTP, a reliable, robust, scalable,

and efficient protocol for WSN. XCTP solves the problem

of reliable data collection, extending the de-facto standard

collection routing protocol CTP. XCTP allows bi-directional

exchange of messages between a node and the base station,

extending the range of previously impossible applications

with the CTP. For example, we show that XCTP favors

the construction of transport protocols, unlike CTP. In our

experiments, XCTP reduces the number of states stored when

compared with AODV. This indicates that XCTP is an alter-

native for applications in L2Ns that are intolerant to data loss.

REFERENCES

[1] Tymo: Dymo on tinyos. http://tinyos.stanford.edu/tinyos-wiki/index.php/
Tymo, 2008.

[2] Dynamic manet on-demand (aodvv2) routing draft-ietf-manet-dymo-26.
http://tools.ietf.org/html/draft-ietf-manet-dymo-26, 2013.

[3] The multihoplqi protocol. http://www.tinyos.net/tinyos-2.x/tos/lib/net/
lqi/, 2014.

[4] Adam Chlipala, Jonathan Hui, and Gilman Tolle. Deluge: data dissem-
ination for network reprogramming at scale. University of California,

Berkeley, Tech. Rep, 2004.
[5] Stephen Dawson-Haggerty, Arsalan Tavakoli, and David Culler. Hydro:

A hybrid routing protocol for low-power and lossy networks. In Smart

Grid Communications (SmartGridComm). IEEE, 2010.
[6] A Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and

flexible operating system for tiny networked sensors. In Local Computer

Networks, 2004. 29th Annual IEEE International Conference on, 2004.
[7] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and

Philip Levis. Collection tree protocol. In Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems, November 2009.
[8] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and

F. Silva. Directed diffusion for wireless sensor networking. Networking,

IEEE/ACM Transactions on, 2003.
[9] D Johnson, Y Hu, D Maltz, et al. The dynamic source routing protocol

for mobile ad hoc networks. Technical report, RFC 4728, 2007.
[10] Sukun Kim, Rodrigo Fonseca, Prabal Dutta, Arsalan Tavakoli, David

Culler, Philip Levis, Scott Shenker, and Ion Stoica. Flush: A reliable
bulk transport protocol for multihop wireless networks. In Proceedings

of the 5th International Conference on Embedded Networked Sensor

Systems. ACM, 2007.
[11] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim:

Accurate and scalable simulation of entire tinyos applications. In
Proceedings of the 1st international conference on Embedded networked

sensor systems. ACM, 2003.
[12] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin

Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
et al. Tinyos: An operating system for sensor networks. In Ambient

intelligence. Springer, 2005.
[13] Philip Alexander Levis, Neil Patel, David Culler, and Scott Shenker.

Trickle: A self regulating algorithm for code propagation and main-

tenance in wireless sensor networks. Computer Science Division,
University of California, 2003.

[14] Jeongyeup Paek and Ramesh Govindan. Rcrt: Rate-controlled reliable
transport for wireless sensor networks. In Proceedings of the 5th

International Conference on Embedded Networked Sensor Systems.
ACM, 2007.

[15] Charles E Perkins and Elizabeth M Royer. Ad-hoc on-demand distance
vector routing. In Mobile Computing Systems and Applications, 1999.

Proceedings. WMCSA’99. Second IEEE Workshop on. IEEE, 1999.
[16] Kannan Srinivasan, Maria A Kazandjieva, Saatvik Agarwal, and Philip

Levis. The β-factor: measuring wireless link burstiness. In Proceedings

of the 6th ACM conference on Embedded network sensor systems. ACM,
2008.

[17] Xin-Sheng Wang, Yong-Zhao Zhan, and Liang min Wang. Stcp:
Secure topology control protocol for wireless sensor networks based on
hexagonal mesh. In Wireless Communications, Networking and Mobile

Computing, 2008. WiCOM ’08. 4th International Conference on, 2008.
[18] Tim Winter. Rpl: Ipv6 routing protocol for low-power and lossy

networks. 2012.
[19] Alec Woo, Terence Tong, and David Culler. Taming the underlying

challenges of reliable multihop routing in sensor networks. In Proceed-

ings of the 1st International Conference on Embedded Networked Sensor

Systems. ACM, 2003.


